Computational Geometry

Professor Dr.Thomas Ottmann
Albert Ludwigs University

Lecture 1: Introduction

« History: Proof-based, agorithmic, axiomatic
geometry, computational geometry today
« Problems and applications
* An example: Computing the convex hull:
1. the “naive approach”
2. Graham's Scan
3. Lower bound

Frelburg « Design, analysis, and implementation of
geometrical algorithms
Lection 1: Computational Geometry AM 1 Lection 1: Computational Geometry At 2
Introduction Prof.Dr.Th.Ottmann e Introduction Prof.Dr.Th.Ottmann o
Ancient example of proof-based geometry Pythagoras
Born: about 562 BC in Samos
Died: about 475 BC
Pythagoras’s Theorem (562 - 475 BC):
The sum of the squares of the sides of a right triangle
is equal to the square of the hypotenuse.
Already known to the Babylonians and Egyptians as
experimental fact.
Pythagorean innovation: A proof, independent of
experimental numerical verification.
Lection 1: Computational Geometry Al 3 Lection 1: Computational Geometry Ay 4
Introduction Prof.Dr.Th.Ottmann &ad Introduction Prof.Dr.Th.Ottmann L
. Pythagoras's theorem Proof of Pythagoras’s Theorem
Lection 1: Computational Geometry AN s Lection 1: Computational Geometry AN 6
Introduction Prof.Dr.Th.Ottmann Py Introduction Prof.Dr.Th.Ottmann & e’

Ancient example of a geometrical
algorithm

Rhind papyrus (approx. 1650 BC), copy of an older
papyrus of (approx. 1900 BC)

Problem 50: A circular field has diameter 9 khet.
What is its area?

Solution: Subtract 1/9 of the diameter which leaves 8
khet. The area is 8 multiplied by 8 or 64 setat.

Lection 1: Computational Geometry A 7
Introduction Prof.Dr.Th.Ottmann ey

L _r_ (o vl PR ST
d In-s_ru.m-_ Aestes 1l
sl “'I.a* L]

" The Rhind Papyrus
LEE .{.L‘s i)

'.*.-1
-|.|.I
wald §

Lection 1: Computational Geometry Al s
Introduction Prof.Dr.Th.Ottmann ey

A= ((8/9)2rf . approaches up to 2%

256/81 1% _vexperimental quadrature of the circle "

Ancient example of Axiomatic Geometry

Some axioms from the "The Elements" of Euclid

Born: about 325 BC

= cad.16r? : ;
Died: about 265 BC in
Alexandria, Egypt
Lection 1: Computational Geometry i l‘. 9 Lection 1: Computational Geometry i3 l‘. 10
Introduction Prof.Dr.Th.Ottmann &ad Introduction Prof.Dr.Th.Ottmann s

Ancient example of Axiomatic Geometry

Fundamental notions: Point, straight line, plane,
incidence relation (" lies on ", " goes through ")

A1: For any two points P and Q there is exactly one straight
line g on which P and Q lie.

A2: For each straight line g there is one point, which is not
ong.

A3: For each straight line to g and each point P, which
is not on g, there is exactly one straight line h, on
which P lies and which does not have a common
point with g.

Lection 1: Computational Geometry J{: l‘.
Introduction Prof.Dr.Th.Ottmann C

11

Klein's model
Question: Is A3 independent of A1 and A2?

[

v Klein’s model

Lection 1: Computational Geometry J{: l‘. 12
Introduction Prof.Dr.Th.Ottmann C

Independence of the parallel axiom

Lection 1: Computational Geometry AN
Introduction Prof.Dr.Th.Ottmann P

Computational Geometry today

» Back to the historical roots

« Search for simple, robust, efficient algorithms

» Fragmentation into:
Rather theoretical investigations
Development of practically useful tools

» Hundreds of papers per year

« Application of algorithmic techniques and data
structures

« Efficient solution of fundamental, " simple" problems

» Development of new techniques and data structures
- Randomization and incremental construction
- Competitive algorithms

Lection 1: Computational Geometry T

2t 14
Introduction Prof.Dr.Th.Ottmann &

Lecture 1: Introduction

* History: Proof-based, algorithmic, axiomatic
geometry, computational geometry today

* Problem fields

* An example: Computing the convex hull:
1. the “naive approach”
2. Graham's Scan
3. Lower bound

» Design, analysis, and implementation of
geometrical algorithms

Problem fields

« Typical questions
« Geometrical objects: points, lines, surfaces
» Techniques

« Applications

Lection 1: Computational Geometry va | 1
Introduction Prof.Dr.Th.Ottmann -

Lection 1: Computational Geometry ¥e '
Introduction Prof.Dr.Th.Ottmann -

Finding the nearest fast-food restaurant

Partitioning the plane into areas of
equal nearest neighbors

(LAl
i m
I [
i im
Lection 1: Computational Geometry Al s
Introduction Prof.Dr.Th.Ottmann -

] m
[} | Il \\
i >
o WA W
P ~ il \‘
> 3 &
\
Lection 1: Computational Geometry Al
Introduction Prof.Dr.Th.Ottmann e

Art gallery problem

How many stationary guards
are needed to guard the room?

Watchmen routes

Compute the optimal watchman
route for a mobile guard

Lection 1: Computational Geometry Al s

Introduction Prof.Dr.Th.Ottmann

Lection 1: Computational Geometry Ve |
Introduction Prof.Dr.Th.Ottmann .

Visibility problems

Hidden-line-elimination

Visible surface computation
/
Lection 1: Computational Geometry ,.': 'j. 7
Introduction Prof.Dr.Th.Ottmann - -

Intersection problems

Given a set of line segments,
— rectangles, polygons, ...:
Compute all pairs of intersecting

] Objects.

|

Lection 1: Computational Geometry va | 8
Introduction Prof.Dr.Th.Ottmann -

Geometric objects: Points, lines, ...

Lection 1: Computational Geometry ¥e |’

Introduction Prof.Dr.Th.Ottmann

Different algorithms for points

Minimum spanning tree

. .
«
P
.
N
Y
.
Lection 1: Computational Geometry Al
Introduction Prof.Dr.Th.Ottmann -

Different algorithms for points

Delauney triangulation

Lection 1: Computational Geometry AN

Introduction Prof.Dr.Th.Ottmann

Different algorithms for points

Convex hull
Lection 1: Computational Geometry ,.': 'j. 12
Introduction Prof.Dr.Th.Ottmann . -

Voronoi Region

Lection 1: Computational Geometry ve | 13
Introduction Prof.Dr.Th.Ottmann -

Voronoi Diagram

Lection 1: Computational Geometry e |'n 14
Introduction Prof.Dr.Th.Ottmann -

Geometric search

. Closest pair

Is it possible to close the gap between Q(n log n) and O(n?)?

Asymptotic bounds are relevant!

Lection 1: Computational Geometry Gt
Introduction Prof.Dr.Th.Ottmann -

Difference between n, n log n and n?
n ‘ nlogn
210x10° |10+210=104 | 220=106
2202106 | 20+ 22022+ 107 240 210"

n2?

Interactive

Processing | n log n algorithms | n? algorithms
n = 1000 yes ?

n = 1000000 ? no

Computational geometry has developed new types of
algorithms which may solve basic geometric problems
efficiently.

Lection 1: Computational Geometry % 'f. 16
Introduction Prof.Dr.Th.Ottmann -

Application domains

Computer graphics: 2- and 3-dimensional

R aut ¥ [LB
Robotics, CAD, CAM
VLSI design
Database systems, GIS

Molecular modelling, ...

Lection 1: Computational Geometry Ve | 17
Introduction Prof.Dr.Th.Ottmann

Geographical information systems

UNI-Offspring = \
sofion 4
Documentation, analysis, and
maintenance of gas, water and
sewage pipes
and telecommunications lines
Lection 1: Computational Geometry ,.': 'j. 18
Introduction Prof.Dr.Th.Ottmann . -

Robotics

Laserscan robot

Localisation and path-finding in
unknown environments.
Example of an On-line scenario
of geometrical algorithms

Lection 1: Computational Geometry
Introduction Prof.Dr.Th.Ottmann

Lecture 1: Introduction

« History: Proof-based, algorithmic, axiomatic
geometry, computational geometry today
* Problem fields
* An example: Computing the convex hull:
1. the “naive approach”
2. Graham's Scan
3. Lower bound
« Design, analysis, and implementation of

geometrical algorithms

Convex Hulls

P
= 7Pq >
Pq
q

Subset of S of the plane is convex, if for all pairs p,q
in S the line segment pq is completely contained in
S.

The Convex Hull CH(S) is the smallest convex set,
which contains S.

Lection 1: Computational Geometry AT 1 Lection 1: Computational Geometry AT 2
Introduction Prof.Dr.Th.Ottmann W e Introduction Prof.Dr.Th.Ottmann W e

Convex hull of a set of points in the
plane

Rubber band experiment

The convex hull of a set P of points is the unique convex
polygon whose vertices are points of P and which contains
all points from P.

Lection 1: Computational Geometry i 'f. 3
Introduction Prof.Dr.Th.Ottmann L

A polygon P is a closed, connected
sequence of line segments.

A polygon is simple, if it does
not intersect itself.

A simple polygon is convex,
if the enclosed area is convex.

Lection 1: Computational Geometry Wyl 4
Introduction Prof.Dr.Th.Ottmann L

Computing the convex hull

Right rule: The line segment
pq is part of the CH(P) iff

all points of P-{p,q} lie to the
right of the line through p and q

Lection 1: Computational Geometry
Introduction Prof.Dr.Th.Ottmann

Naive procedure
Input : A set P of points in the plane

Output : Convex Hull CH(P)

1. E=g

2. forall (p, q) from PxP with p = q

3 valid = true

4, forallrin Pwithr=pandr=q

5 if r lies to the left of the directed line from p to q
6 valid = false .

7 if valid thenforE=E U {pq }

Construct CH(P) as a list of nodes from E
Run time: O(n)*

Lection 1: Computational Geometry -': -‘I. 6
Introduction Prof.Dr.Th.Ottmann ¥ e

Degenerate cases

An incremental algorithm

. . . . 1. Linear dependency: more Upper Hull
oints are on a line . I
AR P Partitioning of the problem: .
° . . ° Solution: extended definition o
" " . by cases 3 *
Lower Hull
. Incremental approach:
2. Rounding errors due)
e to computer arithmetic (floats). Given: Uppper hF;J” for z
e 1200Piq .
Solution: symbolic computation, Compute: Upper hull for
interval arithmetic P1s--sP °
Lection 1: Computational Geometry AT 7 Lection 1: Computational Geometry AT s
Introduction Prof.Dr.Th.Ottmann W e Introduction Prof.Dr.Th.Ottmann CEE

Computation of UH (Graham Scan)

Fast computation of the convex hull
Input/output: see " naive procedure "

Sort P according to x-Coordinates

LU={p;, p, }
for i=3ton
LU=LUuU{p;}

while LU contains more than 2 points and the
last 3 points in LU do not make a right turn
do delete the middle of last 3 points

LL={py, Pt }
fori=n-2to1
LL=LLu{p}

while LL contains more than 2 points and the
last 3 points in LL do not make a right turn
do delete the middle of last 3 points
delete first and last point in LL
CH(P)=LUULL

Lection 1: Computational Geometry AT o Lection 1: Computational Geometry AT 10
Introduction Prof.Dr.Th.Ottmann W e Introduction Prof.Dr.Th.Ottmann W e
Correctness
R . Proof: for Upper Hull by induction:
untime (1) {p4, P, } is a correct UH for a set of 2 points.

Theorem: The fast algorithm for computing the convex hull
(Graham Scan) can be carried out in time O(n log n).

Proof: (for UH only)

Sorting n points in lexicographic order takes time O(n log n).

Execution of the for-loop takes time O(n).
Total number of deletions carried out in all executions
of the while loop takes time O(n).

- Total runtime for computing UH is O(n log n)

Lection 1: Computational Geometry .': -‘I. 11
Introduction Prof.Dr.Th.Ottmann ¥ e

(2) Assume: { p,...,p; } is a correct UH for i points and
consider p;,4

By induction a too high point may lie only in the slab
V. This, however, contradicts the lexicographical order
of points!

Lection 1: Computational Geometry .': -‘I. 12
Introduction Prof.Dr.Th.Ottmann ¥ e

Lower bound

Reduction of the sorting problem to the computation of the
convex hull.

1Ky e X > (63 XD, e (%) O(N)

2. Costruct the convex hull for these points

Design, Analysis & Implementation

1. Design the algorithm and ignore all special cases.
2. Handle all special cases and degeneracies.

3. Implementation:

3. Output the points in (counter-)clockwise order Computing geometrical objects: best possible

Decisions (e.g. comparison operations):
suppose exact (correct) results
Support:
Libraries: LEDA, CGAL
Visualizations: VEGA

Xq Xp oo Xy
Lection 1: Computational Geometry AT 3 Lection 1: Computational Geometry AT e
Introduction Prof.Dr.Th.Ottmann L Introduction Prof.Dr.Th.Ottmann W e

Line Segment Intersection

« Motivation: Computing the overlay of several maps
* The Sweep-Line-Paradigm: A visibility problem

« Line Segment Intersection

« The Doubly Connected Edge List

« Computing boolean operations on polygons

Lecture 2 Computational Geometry Lecture 2 Computational Geometry 2
Line Segment Intersection Prof.Dr.Th.Ottmann Line Segment Intersection Prof.Dr.Th.Ottmann
Motivation Problem definition

Thematic map overlay in Geographical Information Systems

/

river overlaid maps

road

1. Thematic overlays provide important information.

2. Roads and rivers can both be regarded as networks of
line segments.

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Input: Set S = {s;...,s,,} of n closed line segments s;={(x;, y;), (X, ¥)}

Output: All intersection points among the segments in S

The intersection of two lines can be computed in time O(1).

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Naive algorithm

Goal: Output sensitive algorithm!

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

The Sweep-Line-Paradigm: A visibility problem

Input: Set of n vertcal line segments
Output: All pairs of mutually visible segments

Naive method:

F Observation: Two line segments s and s”

are mutually visible iff

E there is a y such that s and s"are immediate
neighbors at y.

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Sweep line algorithm
Q is set of the start and end points of the segments in
decreasing y-order

T is set of the active line segments

Algorithm

Initialise Q as set of start and endpoints of segments in decreasing y-order;
Initialise the set of active segments T = &;

HQ% while Q # @& do
.D|DH p = Q.Min; remove p from Q;
A | AIDH if (p start point of segment s)
IDIF!
E: ':VEC):.VEEH T =T u {s}; determine neighbors s’and s”* of s;
D E | ACDIEIFH report (s, s’) and (s,s"’) as visible pairs
¢ F D. | ACIEFH else /* p is end point of segment s */
B .G | ACEFIGIH determine neighbors s’and s** of s;
A H B | AIBICEFGH report (s’, s”’) as visible pair;
E F. | ABCE!GH T=T-{s}
G C. | ABIEGH
Lecture 2 Computational Geometry 7 Lecture 2 Computational Geometry 8
Line Segment Intersection Prof.Dr.Th.Ottmann Line Segment Intersection Prof.Dr.Th.Ottmann

Sweep Line principle

Imaginary line moves in y direction.
Each point is an event.

Input: A set of (iso-oriented objects)
Output: Problem-dependent

Q: object and problem-dependant queue of event points
T: ordered set of the active objects /* status structure */
while Q # & do

select next event point from Q and remove it from Q;

update(T);

report problem-dependent result

Computational Geometry

Lecture 2
Prof.Dr.Th.Ottmann

Line Segment Intersection

Data structures: event queue

Operations to be supported:
Initialisation, min, deletion of points,

Possible implementation: Balanced search tree of points with order

p<g<p,<q, or(p,=q,andp, <q,)

Initialisation takes time O(m log m) for m items.
Deletion takes time O(log m) with m items in queue.

In most cases a priority queue supporting insertion and min-removal
(eg. heap, O(m), O(log m), for initialisation and min-removal) is
enough .

Computational Geometry

Lecture 2
Prof.Dr.Th.Ottmann

Line Segment Intersection

Data structures: status structure

Operations to be supported:
m Insertion, deletion, searching for neighbors

Possible implementation:

Balanced search tree, O(log n) time

Runtime analysis

Initialise Q as set of start and endpoints of
segments in decreasing y-order;
Initialise the set of active segments T = &;
while Q@ do
p = Q.Min; remove p from Q;
if (p start point of segment s)
T =T u {s}; determine neighbors s’and s"" of s;
report (s, s") and (s,s”") as visible pairs
else /* p is end point of segment s */
determine neighbors s’and s™" of s;
report (s’, s”’) as visible pair;

. T=T-{s
Node values (keys) are used for routing {s}
Lecture 2 Computational Geometry Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann Line Segment Intersection Prof.Dr.Th.Ottmann

Summary

Theorem: For a given set of n vertical line segments all k pairs of
mutually visible segments can be reported in time O(n log n).

Note: k is O(n)

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Line Segment Intersection

« Motivation: Computing the overlay of several maps
* The Sweep-Line-Paradigm: A visibility problem

« Line Segment Intersection

« The Doubly Connected Edge List

« Computing boolean operations on polygons

Lecture 2 Computational Geometry AT
Line Segment Intersection Prof.Dr.Th.Ottmann CERS

Line segment intersection

Input: Set S = {s;...,s,} of n closed line segments s;={(x; y;), (X, Y)}

Output: All intersection points among the segments in S

The intersection of two lines can be computed in time O(1).

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Sweep line principle

Example: Segment Intersection

QlT

A A

\ /B B

\ C, c

| Dy D

\V /N c

\)/ \\ Ey

7\ \) B

. N ! A\ a

Event queue: upper, lower, intersection points \ D

Status structure: Ordered set of active line segments 1 E
Lecture 2 Computational Geometry i 'j. 3 Lecture 2 Computational Geometry 4

Line Segment Intersection Prof.Dr.Th.Ottmann W e Line Segment Intersection Prof.Dr.Th.Ottmann

Data structures: Event Queue Q

Operations: Initialisation (sequence of upper and lower endpoints
of segments in decreasing y-order), min-delete,
insertion (of intersection points)
Implementation: Balanced search tree with order
p <q< py <q, or (p, =gy and p, <q,)
Space: O(n + k), k = #intersections
Time: Initialisation: O(n log n)
Min-delete: O(log n)
Insertion: O(log n)

Lecture 2 Computational Geometry .‘: -‘I. 5
Line Segment Intersection Prof.Dr.Th.Ottmann o e

Data structures: Status structure T

WAV
;A

Operations: insertion, deletion,
neighbor search,
(changing order)

Balanced search tree Space. O(n)
Time: O(log n)
Lecture 2 Computational Geometry .‘: -‘. 6

Line Segment Intersection Prof.Dr.Th.Ottmann e

Number of operations, total time

n = #segments
k = #intersections
Number of operations on event queueQ: <= 2n+Kk,

Number of operations on status structureT: <= 2n+k

Result: Total time required to carry out the sweep-line
algorithm for computing all k intersections in a set of n
line segments is O((n+k) log n).

The sweep-line algorithm is output sensitive!

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

A simple neighborhood lemma

Lemma : Let s,and s; be two non-horizontal segments intersecting in a
single point p and no third segment passing through p. Then there is
an event point above p where s, and s; become adjacent and are
tested for intersection.

P
S s
/|

Proof : L is so close to p that s;and s; are next to
each other. Since s;and s; are not yet
adjacent at the beginning of the algorithm
there is an event q where s, and s; become
adjacent and tested for intersection.

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Handling special cases

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Special cases |

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Special cases Il

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

HandleEventPoint(p)

if (L(p) w U(p) L C(p) contains more than 1 segment)
then {report p as intersection;
delete L(p) u C(p) from T;
insert U(p) u C(p) into T;}
if (U(p) U C(p) = {})
then {Let s, and s, be left and right neighbours of p in T
FindNewEvent(s,,s,.p)
else
s’ = leftmost segment of U(p) U C(p) in T
s, = left neighbour of s”in T
FindNewEvent(s,,s’,p)
s’ = rightmost segment of U(p) U C(p)
s, = right neighbour of s in T
FindNewEvent(s"’,s,,p)

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

FindNewEvent(s,s",p)

If (s and s” intersect below the sweep line L
or on it and to the right of the current event point p)
and (the intersection of s and s’is not yet present in Q)
then insert the intersection point into Q;

Lecture 2 Computational Geometry AT 13
Line Segment Intersection Prof.Dr.Th.Ottmann CERS

Summary

Theorem: Let S be a set of n line segments in the plane. All intersection
points in S, with for each intersection point the segments involved in it,
can be reported in O(n log n + k log n) time and O(n) space, where k

is the size of the output..

k can be reduced to |, | = #intersections

Lecture 2 Computational Geometry AT 14
Line Segment Intersection Prof.Dr.Th.Ottmann CERS

Line Segment Intersection

+ Motivation: Computing the overlay of several maps
» The Sweep-Line-Paradigm: A visibility problem

+ Line Segment Intersection

» The Doubly Connected Edge List

« Computing boolean operations on polygons

Lecture 2 Computational Geometry AT 1 Lecture 2 Computational Geometry 2
Line Segment Intersection Prof.Dr.Th.Ottmann e Line Segment Intersection Prof.Dr.Th.Ottmann
Motivation Doubly Connected Edge List

Thematic map overlay in Geographical Information Systems 3 Records : vertex {
Coordinates
1 IncidentEdge
€ h
face {
/ OuterComponent
InnerComponent
d river Overlaid maps b
roa halfedge {
1. Thematic overlays provide important information. Example .(l?”.gm
node 1={((1,2)),12} win
2. Roads and rivers can both be regarded as networks of face 1={15,[67]} IncidentFace
line segments. edge 54 ={5,45,1,43,15} Next
Prev
I3
Lecture 2 Computational Geometry AT 3 Lecture 2 Computational Geometry 4
Line Segment Intersection Prof.Dr.Th.Ottmann L Line Segment Intersection Prof.Dr.Th.Ottmann
Overlay
Overlay

U(s1,82)
Plane Sweep (downward above)
Data structures : Status structure T, Event Queue Q,
Doubly Connected Edge List D
Edges in Q and D are crosswise connected
Lecture 2 Computational Geometry .': -‘.' 5

Line Segment Intersection Prof.Dr.Th.Ottmann W ea

N

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Re-use received from edges, there orientation
remains

Updating of T and Q such as segment intersection

2 phases: Edges and corners surfaces

Edges and Corners
Example: Edge of a component cuts nodes of the other

Two halfedge Records e’, e”" with v as
origin generate set twin-pointers and double
edges NEXT and PREV at the corner points
set and neighbours of e update

= time O(1 + deg(v)) at a node
= time O(n | og n + k | og n) altogether,

k complexity O(s1, s2)

Lecture 2 Computational Geometry 7 Lecture 2 Computational Geometry 8
Line Segment Intersection Prof.Dr.Th.Ottmann Line Segment Intersection Prof.Dr.Th.Ottmann
Surfaces Surfaces

Difference inside and outside by 180°

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Difference same surface

Applies only to linked nodes!

Outside @

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Construction of G

© ©

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Construction of G

Theorem : Connected components form a surface G
can be designed in O(n+k).

Lecture 2 Computational Geometry
Line Segment Intersection Prof.Dr.Th.Ottmann

Boolean Operations For Polygons

P1
P2

P1 AND P2 (new surfaces in overlap)

P1ORP2 (all surfaces in overlap)

P1-P2 (old faces) - (newly generated faces)

Letn = [P1] + |P2|

All 3 operations can be calculated in O(n log n + k log n),
k is output size

Lecture 2

Computational Geometry
Line Segment Intersection

Prof.Dr.Th.Ottmann

=
AT

LEDA

Library of Efficient Datastructures and Algorithms
http://www.mpi-sb.mpg.de/ LEDA/leda.html

Research
http://www.mpi-sb.mpg.de/ mehlhorn/LEDAbook.html

Installed under :

Jusr/local/leda/v3.6.1

Lecture 2

Computational Geometry
Line Segment Intersection

Prof.Dr.Th.Ottmann

Polygon Triangulation

* Motivation: Guarding art galleries
+ Art gallery theorem for simple polygons
« Partitioning of polygons into monotone pieces

« Triangulation of y-monotone polygons

Lecture 3: Computational Geometry ,.': VR
Polygon Triangulation Prof. Dr. Th. Ottmann ¥ e

Guarding art galleries

) @ “Art Gallery“ Problem
JJ ® ®
@

O

Lo
/]

Lecture 3: Computational Geometry ,.': ™2
Polygon Triangulation Prof. Dr. Th. Ottmann ¥ e

Visibility polygon

Guarding a triangulated polygon

Triangulation of simple polygons

Lecture 3: Computational Geometry 3 Lecture 3: Computational Geometry 4
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann
Theorem Continuation of proof

Theorem: Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n-2 triangles.

Proof: By induction on n. Let n>3, and assume theorem is true
for all m<n. Let P be polygon with n vertices. We first
prove the existence of a diagonal in P. Let v be leftmost
vertex of P. Let u and v be two neighboring vertices of v.
If uw lies in the interior of P we have found a diagonal.
Else, there are one or more vertices inside the triangle
defined by u, v, and w, or The diagonal uw. Let v" be the
farthest vertex from uw. The segment connecting v’ to v
cannot intersect an edge of p (contradicts the definition of
v’). Hence vv’ is a diagonal.

Lecture 3: Computational Geometry -': \.' 5
Polygon Triangulation Prof. Dr. Th. Ottmann w e

So a diagonal exists. Any diagonal cuts P in two simple sub-
polygons P, and P,. Let m, be the number of vertices of P,

and m, the number of vertices of P,. Both m; and m, must

be smaller than n, so by induction P, and P, can be triangulated
so P can be triangulated as well.

Now we have to prove any triangulation of P contains n-2 triangles.
Consider an arbitrary diagonal in some triangulation T,.

This diagonal cuts P into 2 subpolygons with m, and m, vertices.
Every vertex of P occurs in exactly one of 2 subpolygons. Hence
m,+m, = n+2. So by induction any triangulation of P; contains

m;-2 triangles = (m;-2) + (m,-2) = n-2 triangles.

Lecture 3: Computational Geometry -': \.' 6
Polygon Triangulation Prof. Dr. Th. Ottmann w e

Number of triangles in any triangulation of a simple

Proof of the existence of diagonals in P

Consider leftmost vertex v of P

polygon with n vertices. Case 1: uw completely in P Case 2: uw not completely in P
Case 1: n=3
Wy
W
v
u
A
Case 2: n>3 m
Lecture 3: Computational Geometry Lecture 3: Computational Geometry 8
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann
Proof of the existence of a diagonal in P
Lecture 3: Computational Geometry Lecture 3: Computational Geometry 4 'f. 10
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann W e
Upper and lower bounds for the £ |
xXam
number of guards ample
We know that for any simple polygon with n
vertices (n-2)guards are always enough.
But can we do better?
Idea: Compute a 3-coloring of the vertices and place guards
on a color.
Result: L n/3] guards are sufficient.
Lecture 3: Computational Geometry Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann

Theorem

Theorem: Each simple polygon is 3-colorable.

Proof: Dual graph is a binary tree, this means that we can
find a 3-coloring using a simple DFS.

Corollary: Ln/3] guards are always sufficient to guard a simple
Polygon with n vertices.

Lecture 3: Computational Geometry i 'f. 13
Polygon Triangulation Prof. Dr. Th. Ottmann W e

Art gallery theorem

Theorem: For a simple polygon with n vertices, Ln/3] cameras are
occasionally necessary and always sufficient to have every point in
the polygon visible from at least one of the cameras.

Proof: Worst-case example.

Lecture 3: Computational Geometry i 'f. 14
Polygon Triangulation Prof. Dr. Th. Ottmann W e

Triangulation (Naive)

Triangulation (Naive)

Lecture 3: Computational Geometry Lecture 3: Computational Geometry 2
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann
I-Monotone

Triangulation of a convex polygon

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Convex polygons are easy to triangulate.

Unfortunately the partition into convex
pieces is just as difficult as the triangulation.

I-monotone
J .)
A simple polygon is called monotone w.r.t.
a line | if for any line I” perpendicular to |
the intersection of the polygon with I" is
connected (y-monotone, if | = y-axis).
Observation: if P is y-monotone then P
‘ Consists of two y-monotone chains.
|
Lecture 3: Computational Geometry 4
Polygon Triangulation Prof. Dr. Th. Ottmann

Two steps for triangulation

1. Divide P into y-monotone parts P,,...,P,

2. Triangulate Py,...,P,

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Split and merge vertices

= start vertex
= end vertex
= regular vertex
= split vertex

= merge vertex

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Lemma: A polygon is y-monotone if it has no split vertices or
merge vertices.

Proof: Suppose P is not y-monotone = there is a horizontal
line | that intersects P in more than one connected
component.

We show that P must have at least one split or merge vertex:

split vertex

(@)

/

o

1N =

e merge vertex

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Start with q to r achieved (go upward)

(a) r= p = there exists a split node between q
andr.

(b) r = p = there exists a r’ (go downward) and
thus a merge node.

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Five types of vertices

= start vertex

= end vertex

= regular vertex
= split vertex

= merge vertex

Removal of Split and Merge nodes

helper(e;)
L8 Y

helper(e)) is lowest vertex above the
sweep line such that the horizontal

v 7 segment connecting the vertex to e,
e, V8 lies inside P.
Merge-nodes are split nodes in \ v, u
reverse. v;is the new helper A S~. \
of e;. We would like to connect ! Sy,

v; to the highest vertex below the
sweep line in between e; and e,

Lecture 3: Computational Geometry 9 Lecture 3: Computational Geometry

Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann
v T helper Algorithm: MakeMonotone

Example a ad ad=a

b ad,bc [bc=b .) . .
c adce | ce=c Input: A simple polygon P stored in a doubly-connected edge list D
d ce ce=d Output: A partitioning of P into monotone sub-polygons, stored in D
e|! ei ei=e
f ei L .
g eigl gl=g Construct a priority queue Q on the vertices of P.
h ei,gl Initialize an empty binary search tree T.
! g! gl - . while Q is not empty
it gljo jo=gl=j o .
Kk gl do remove the vertex v; with highest priority from Q
| In In= call appropriate procedure to handle the vertex.
m|! Inmo | In=mo=m
n mo
(o]

Lecture 3: Computational Geometry Lecture 3: Computational Geometry

Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann

Handling start, end and split vertices
HandleStartVertex(v): T =T u {e}, helper(e;) = v;

HandleEndVertex(v;): if (helper(e;;) is merge vertex)
then insert diagonal connecting v;to
helper(e.;) in D.
T=T-He.}

HandleSplitVertex(v)): Search in T to find the edge directly
left of v;

Insert the diagonal connecting v; to
helper(e)) in D.

helper(e) = v,
Insert e;in T and set helper(e;) to v,

Lecture 3: Computational Geometry Wy lw 13
Polygon Triangulation Prof. Dr. Th. Ottmann L

Handling merge vertices

HandleMergeVertex(v)) : if helper(e, ;) is a merge vertex

then Insert diagonal connecting v; to

helper(e;4) in D.

Delete e, from T.

Search in T to find the edge g, left of v; .

if helper(e;) is a merge vertex

then Insert diagonal connecting v; to

helper(e;) in D.
helper(e;) = v;

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

W | 14

Handling regular vertices

HandleRegularVertex(v;) : if the interior of P lies to the right of v,
then if helper(e, ;) is a merge vertex
then Insert the diagonal
connecting v to helper(e;_;) in D
delete e, from T.
insert e;in T and set helper(e;) to v;.
else search in T to find the edge ¢ left of v;
if helper(e;) is a merge vertex
then insert the diagonal connecting
v;to helper(e)) in D

Correctness of HandleSplitVertex

Consider a segment v,,v; that is added when v; is

reached by HandleSplitVertex. Let e, be the edge ek

to left of v;, and let e, be the edge to right

of v; . helper(e;) = v, when we reach v;.

Argument : v,,v;does not intersect an edge of P
Consider the quadrilateral Q, there are no vertices
of P inside Q, else v,, would not be helper of g;.
Suppose an edge of P intersects v, v, then it
would have to intersect a segment connecting v, to
€; but this is impossible.

helper(e;) = v; Since there are no vertices of P inside Q, no edge
of P can intersect v,.v;
Lecture 3: Computational Geometry AT s Lecture 3: Computational Geometry AT 16
Polygon Triangulation Prof. Dr. Th. Ottmann W e Polygon Triangulation Prof. Dr. Th. Ottmann W e
Theorem

A simple polygon with n vertices can be partitioned
into y-monotone polygons in O(n log n) time with an
algorithm that uses O(n) storage.

Lecture 3: Computational Geometry .': -‘I. 17
Polygon Triangulation Prof. Dr. Th. Ottmann W ea

I-Monotone
Convex polygons are easy to triangulate.
Unfortunately the partition into convex
parts is just as difficult as the triangulation.

I-monotone

~ . .
> A simple polygon is called monotone w.r.t.
aline | if for any line |” perpendicular to |
the intersection of the polygon with |” is
connected (y-monotone, if | = y-Axis).

‘ Observation: P is y-monotone.

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Two steps for triangulation

1. Divide P into y-monotone parts P;,...,P,

2. Triangulate Py,...,P,

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Split and Merge Vertices

= start vertex
= end vertex
= regular vertex
= split vertex

= merge vertex

Five Types of Vertices

® = start vertex
® = end vertex
® = regular vertex
® = split vertex

® = merge vertex

Lecture 3: Computational Geometry 3 Lecture 3: Computational Geometry 4
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann
Triangulation of y-monotone Polygon
Theorem angulation of y-monotone Polygo

A simple polygon with n vertices can be partitioned
into y-monotone polygons in O(n log n) time with an
algorithm that uses O(n) storage.

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Idea: Fan so long build to convexity hurts
alternation from right and left side

Implementation: Scan-line uses stack as
data structure

Case 1: Page overflows Case 2: resembles page

popped
pushed

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

a Example

Batches : ba
c:ba—ca
d:ca—dc

e:dc— ed

Lecture 3: Computational Geometry 7 Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann Polygon Triangulation Prof. Dr. Th. Ottmann
Implementation
Theorem

1. S.push(uy), S.push(u,)

2. forj=3,.,n-1

3 if (side(u;) # side(S.top))

4 while (S # &) v = S.pop, diag(u;,v) y

5. S.push(u;4)

6 S.push(u)

7 else

8 while (diag(S.top, ;) in P)

9. diag(S.top, u) y

10. S.pop

11. S.push(last) Theorem: time O(n)

12. S.push(u) Proof: number of pops <

number of pushes

Lecture 3: Computational Geometry 9
Polygon Triangulation Prof. Dr. Th. Ottmann

Theorem: A strictly y-monotone polygon with n vertices can be
triangulated in O(n) time.

Theorem: A simple polygon with n vertices can be triangulated in
O(n log n) with an algorithm that uses O(n) storage.

Theorem: A planar subdivision with n vertices in total can be
triangulated in O(n log n) time with an algorithm that
uses O(n) storage.

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Computational Geometry Algorithms Library

http://www.cs.uu.nl/CGAL

Kernel

2D/3D point, vector, direction, segment, ray, line, dD point, triangle,
bounding box,iso-rectangle, circle, plane, tetrahedron, predicates,
affine transformations, intersection and distance calculation

Basic Library

half edge data structure, topological map, planar map, polyhedron,
Boolean operations on polygons, planar map overlay, triangulation,
Delauney triangulation, 2D/3D convex hull, and 2D extreme points,
smallest enclosing circle/sphere and ellipse, maximum inscribed
k-gon, and other optimizations, range tree, segment tree, kD tree

Lecture 3: Computational Geometry
Polygon Triangulation Prof. Dr. Th. Ottmann

Linear Programming

Overview

» Formulation of the problem and example
* Incremental, deterministic algorithm

» Randomized algorithm

* Unbounded linear programs

* Linear programming in higher dimensions

Problem description
Maximize CyXq+ CoXo+ ... + CyXy

Subject to the conditions:
a X+ ..agX < b
ay Xy + ... 84X < by

a, Xy + ... 84X < by

Linear program of d|menS|on d:
= (C1,Cz--,Cq)
i = {(X0,Xg) s @ 4%+ L+ 3y gxg < b

I,= hyperplane that bounds h; (straight lines, if d=2)

Lecture 4: Computational Geometry .': ". 1
Linear Programming Prof. Dr. Th. Ottmann Ll
Example

Production of two goods A and B using four raw materials
Value of A: 6 CU, value of B: 3 CU

Rm1 |Rm2 [Rm3 |Rm4

Prod A |2 2 6 2

ProdB (4 1 2 2

Reserve | 5 2 4 3

Maximize profit: f, (x) = 6x, + 3xg under the conditions:
2x, +4x3<5 *2=0, % Xa Xg = 0
2Xp + 1Xg <2
6x5 + 2X3 < 4
2x, +2x3 <3
Xa Xg 20

Lecture 4: Computational Geometry a3
Linear Programming Prof. Dr. Th. Ottmann FaRe

H=¢{h,, ..., h}
Lecture 4: Computational Geometry ,«":-‘.' 2
Linear Programming Prof. Dr. Th. Ottmann o
Xa Chart
l (Xas C) (Xa: Xg)
1 (0, 5/4) (5/2, 0)
T 2 | (02 [(10
3124 3 0, 2) (213, 0)
4 0,32) | (32,0
541
1 -
1
1
1/2- !
1
1
[l l ! l
T T T T T X
12213 1 32 2 52 78
Lecture 4: Computational Geometry ,.':".. 4
Linear Programming Prof. Dr. Th. Ottmann & e

Structure of the feasible region

¥
Y b |

Lecture 4: Computational Geometry -: 5
Linear Programming Prof. Dr. Th. Ottmann .

1. Bounded E

o]

2. Unbounded

Result

Four possibilities for the solution of a linear program

-

. A vertex of the feasible region is the only solution.

2. One edge of the feasible region contains all
solutions.

3. There are no solutions.

4. The feasible region is unbounded toward the

direction of optimization.

In case 2: Choose the lexicographically minimum
solution = > corner

Lecture 4: Computational Geometry AN 6
Linear Programming Prof. Dr. Th. Ottmann !

Structure of the feasible region

L)

7 Hnhoumdes 6 E '
3. Empt: —
mpty C v

Lecture 4: Computational Geometry .’: ". 7
Linear Programming Prof. Dr. Th. Ottmann Ll

1.Bounded C

Linear Programming

Overview

» Formulation of the problem and example
* Incremental, deterministic algorithm

» Randomized algorithm

* Unbounded linear programs

* Linear programming in higher dimensions

-,
Lecture 4: Computational Geometry A Y1
Linear Programming Prof. Dr. Th. Ottmann o

Problem description
Maximize CyXq+ CoXo+ ... + CyXy

Subject to the conditions:
a X+ ..agX < b
ay Xy + ... 84X < by

a, Xy + ... 84X < by
Linear program of dimension d:
€ = (C4,Cp,.--,Cq)
Ry = {(Xq,.0Xg) 5 @14 F .+ 86Xy < D}

I,= hyperplane that bounds h; (straight lines, if d=2)

H={h, ..., h}
=
Lecture 4: Computational Geometry e l'w 2
Linear Programming Prof. Dr. Th. Ottmann LAY

Structure of the feasible region

1.Bounded C ‘

Hnbounded 6 E ‘
3. Empt —
pty C V

Lecture 4: Computational Geometry Al s
Linear Programming Prof. Dr. Th. Ottmann & e

Bounded linear programs

Assumption :
Algorithm UnboundedLP(H, ©) yields either
a) arayin n H, which is unbounded towards ¢, or

b) two half planes h, and h,, so thath; n h, is
bounded towards ¢, or

c) the answer, that LP(H, 6’) has no solution, because
the feasible region is empty.

Lecture 4: Computational Geometry Al 4
Linear Programming Prof. Dr. Th. Ottmann & e

Incremental algorithm
Let C,=h;n h,
Remaining half planes: hs,..., h,
C=C.inh=h,n ..nh

Compute-optimal-vertex (H, ¢)
v, =Nl ; Cy:=h;nhy
fori:=3tondo
Ci=C,nh
v; := optimal vertex of C;

C,0C;nC,..0C,=C
C=28=C=0

Lecture 4: Computational Geometry ;‘:-" 5
Linear Programming Prof. Dr. Th. Ottmann Fg?y'

Optimal Vertex

Lemma 1: Let 2 <i<n, then we have :
1.Ifv,, € h, then v, =v, .
2.1f v,y ¢ h;, then either C;=Jorv,e I,
where |; is the line bounding h;.

Lecture 4: Computational Geometry ;‘:-" 6
Linear Programming Prof. Dr. Th. Ottmann g

Optimal Vertex

h,
h
1
h, N
c
h V3=
hy
h, hy —
C
hs
e _h
2 Vv,
4
Vs
Lecture 4: Computational Geometry {:". 7
Linear Programming Prof. Dr. Th. Ottmann Ll

Next optimal vertex

fo(X) = CiXy + Co%,

Algorithm 2D-LP

—

Input: A 2-dimensional Linear Program (H, ¢)
Output: Either one optimal vertex or J or aray
along which (H, ¢) is unbounded.

if UnboundedLP(H, ¢) reports (H;t) is unbounded or infeasible
then return UnboundedLP(H, ¢)
elsereporth :=h; h,:=h";v,:=l,nl,
let hs,...,h, be the remaining half-planes of H
foriz= 3 to n do
if viq € hjthenvi=v,4
else S ;= H_n*|,
vi= 1-dim-LP(S;.;, €)
if v, not exists then return &
return v,
Running time: O(n?)

Lecture 4: Computational Geometry Al s
Linear Programming Prof. Dr. Th. Ottmann & e

Addition of halfplanes in different orders

°
:o
Bad o
11 ® 12
97 .: 10
53 * 46
T2
Vi
.
Good
1 2
3 5 64
79 108
11 12
Lecture 4: Computational Geometry Al
Linear Programming Prof. Dr. Th. Ottmann Py

Lecture 4: Computational Geometry {: ". 8
Linear Programming Prof. Dr. Th. Ottmann Ll
Algorithm 1D-LP

Find the point x on |; that maximizes cx , subject to
the constraints x € h;, for1<j<i-1
Observation: |~ h; is a ray
LetS,, :={hinl, ..., h NI}
Algorithm 1D-LP{S,, ¢ }
P1 =384
forj:=2toi-1dop;=pNs;
if piy#= @ then
return the optimal vertex of p,; else
return &
Time: O(i)
Lecture 4: Computational Geometry AT
Linear Programming Prof. Dr. Th. Ottmann & e
Optimal vertex
h,
hy hy
<
h, V3= Vy
hy
hy l_,
Cc
h
;5 h, Vs
Lecture 4: Computational Geometry ;';: 'j. 12

Linear Programming Prof. Dr. Th. Ottmann

Algorithm 2D-LP

—

Input: A 2-dimensional Linear Program (H, ¢)
Output: Either one optimgl vertex or & or a ray
along which (H, ¢) is unbounded.

if UnboundedLP(H, ¢) reports (H;t) is unbounded or infeasible
then return UnboundedLP(H, ¢)
else reporthy:=h;h,:=h"; v, =1, N1,
let hs,...,h,, be the remaining half-planes of H
fori:= 3 tondo
if viq € hithen vi=v 4
else S ;= H_n*|,
vi=1-dim-LP(S.4, ¢)
if v, not exists then return &

return v,
Running time: O(n?)

Lecture 4: Computational Geometry A e 13
Linear Programming Prof. Dr. Th. Ottmann o

Addition of halfplanes in different orders

L]
)
Bad o’
1 1g .:) (1)2
75 ®e 8
531 46
2
Vi
L]
Good
1 2
3 57 864
97 110
11 12
Lecture 4: Computational Geometry -‘: .‘. 14
Linear Programming Prof. Dr. Th. Ottmann LAY

Linear Programming

Overview

» Formulation of the problem and example
* Incremental, deterministic algorithm

* Randomized algorithm

» Unbounded linear programs

* Linear programming in higher dimensions

Algorithm 2D-LP

Input: A 2-Dimensional Linear Program (H, 07
Output: Either one optimal vertex or & or a ray
along which (H, ¢) is,unbounded.
if UnboundedLP(H, ¢) reports (H, ¢) is infeasible
then return UnboundedLP(H, c)
else hy:=h;hy:=h";v,:=l,nl,
hs,...,h, := remaining half-planes of H
fori:= 3 to ndo
if viqeh;
then vii=vi4
else S y:=H. n*|; .
v;:= 1-dim-LP(S.4, ¢)
if v, not exists then return &
return v,
Running time: O(n?)

Lecture 4: Computational Geometry Lecture 4: Computational Geometry 2
Linear Programming Prof. Dr. Th. Ottmann Linear Programming Prof. Dr. Th. Ottmann
New problem Sequences
Find the point x on |; that maximizes ox | subject to
the constraints x e hj, for1<j<i—1 o
L]
Observation: |, h; is aray b
B 03
LetS, :={hnl, ..., h. "I} a 19 :. 11
— (]
1. 1-dim-LP{S_,, ¢ } d 75, % 680
_ 2
2. py=sy)
3. forj:=2toi-1do oV
4. P; = PN §; \
5. if p.q# @ then G
6 return the optimal vertex of p,, else 1 2
7 return & ° 3 &4
o 79 1 8
Time: O(i) d 1,
4
Lecture 4: Computational Geometry Lecture 4: Computa;ional Geometry 4
Linear Programming Prof. Dr. Th. Ottmann Linear Programming Prof. Dr. Th. Ottmann
Optimal Vertex Algorithm 2D-LP |
Input: A 2-Dimensional Linear Program (H, C)
h Output: Either one optimal vertex or & or a ray
4 h h along which (H, C) is unbounded.
N < if UnboundedLP(H, C) {h, h’}
then return UnboundedLP(H, C) ~
hi:=h;hy:=h" ;v =1 N,
_ hs,...,h, := remaining half-planes of H
oy,= .
h for i:= 3 to n do
2 if viieh,
h h then v;:=v;,
th . I_c' else Si;:=Hy N*|,
° vi= 1-dim-LP(S;,, C)
h if v, does not exist then return &
5
. \.v return vn.
Vo o, Running time: O(n?)
Lecture 4: Computational Geometry Lecture 4: Computational Geometry .': -‘I. 6
Linear Programming Prof. Dr. Th. Ottmann Linear Programming Prof. Dr. Th. Ottmann ¥ e

Sequences
.
®e
e
B %o
a 1 e 1
1975 3 812
d 3 4670
2
%
i
N 1
o 3 pe
[¢] 79 1 8
11
d ; 0
Lecture 4: Computational Geometry AT 7
Linear Programming Prof. Dr. Th. Ottmann CEE

Algorithm 2D-LP

Input: A 2-Dimensional Linear Program (H, C)
Output: Either one optimal vertex or & or
a ray along which (H, CTis unbounded.
if UnboundedLP(H, C) = {h, h’} then
return UnboundedLP(H, C) "
hi:==h;h,:=h";v,=l,n |,
hs,...,h, := remaining half-planes of H
compute a random permutation hs, ..., h,
fori:=3tondo
if viyeh; then vi=v4
else S ;:=Hi 0"
v;:= 1-dim-LP(S.;, C) "
if v; does not exist then
return &
return v,
Running time: O(n?)

Lecture 4: Computational Geometry
Linear Programming Prof. Dr. Th. Ottmann

Randomization

Theorem: The 2-dimensional linear programming problem with n
constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

Lecture 4: Computational Geometry Welm 9
Linear Programming Prof. Dr. Th. Ottmann W e

Random Variable x;

X=s omenae "
3 0f)e X
E{Zn:o(i)-x}:io(i)-E[x]

E[x] is the probability that v, & h;

Lecture 4: Computational Geometry i 'f. 10
Linear Programming Prof. Dr. Th. Ottmann W e

Algorithm 2D-LP __

Input: A 2-Dimensional Linear Program (H, C)
Output: Either one optimal vertex or @ or a ray
along which (H;*C) is unbounded.

if UnboundedLP(H, C)={h,h} —

then return UnboundedLP(H, C)
hi:=h;h,:=h"; v, =1, nl,
hs,...,h, := remaining half-planes of H
fori:=3tondo

if viqeh;
then v;:=v,
else Sy:=Hy N*};

vi:= 1-dim-LP(S;;, C
if v; does not exist then return &

-

return v,
Running time: O(n?)

Lecture 4: Computational Geometry .': -‘I. 11
Linear Programming Prof. Dr. Th. Ottmann W e

Unbounded Linear Programs
n :=The outward normal of h,
n
T~
@i
h' ¢

¢; := The smaller angle that nT’nakes withc

Imin, @N index with
Pimin = MIN (Pj,1 SJ <n
Lecture 4: Computational Geometry .': -‘I. 12
Linear Programming Prof. Dr. Th. Ottmann W e

Hon = {0y eH | Mi = T
ar:={hj€H| nj:'ﬁinin}

Lemma

Let H = {hy,h,,...,h,} be a set of half-planes.
Assuming that N(Hp, U Hy,) is not empty.

1. Ifl. N h;. is unbounded in the direction ¢ for “every half-

Bt o plane h inthe set H\ (H;, v Hyy,), then (H, ¢)is
b unbounded along a ray contained in I,
H min { - .
min {. ! 2. Ifl. ~ h;.is bounded in the direction ¢ for some h;.in
: i < h. H\ (Hpin & Hoar), then the linear program ({h;., hy}, ¢)
is bounded.
Lecture 4: Computational Geometry AT 13 Lecture 4: Computational Geometry AT 14
Linear Programming Prof. Dr. Th. Ottmann CEE Linear Programming Prof. Dr. Th. Ottmann CEE

Algorithm UNBOUNDEDLP

Input: A 2-Dimensional Linear Program (H, CT

Output: Either one optimal vertex or & or
a ray along which (H, C) is unbounded.
For each half plane h; € H compute %)
Let hi be half plane W|th ;= min ;1 <] <n
m.n ={heH]| Ni= nh.n}
l_Far {hEHlnjz-nan}
H\ (Hyin U Hpa), compute intersection in Hyy U Hp,
If the |ntersect|on is_.empty
then report (H, C) is feasible
else Let h; € H;, be the half-plane whose line bound
the intersection N —
if there is half plane h.e FSuchthat I.~h,. bounded in C
then report ({h., h.}, C)is bounded -

ogrLON~

Higher Dimensions
Let hy,...,hy H be the d certificate half-spaces that
UNBOUNDEDLP returns.
Ci=hinh,n..nh
Lemma: Letd <i<n, and let C; be defined as above.
1.1fv.4€ h;, then v, = v,
2. If v4¢ h;, then either C= @ or v, € g;, where g; is the
hyperplane that bounds h;

Lecture 4: Computational Geometry r Lecture 4: Computational Geometry i 'f. 16
Linear Programming Prof. Dr. Th. Ottmann Linear Programming Prof. Dr. Th. Ottmann E
Algorithm RANDOMIZEDLP
9 Theorem

Input : A linear program (H, ¢").

Output : Either one optimal vertex or & or a ray along which (H, ¢)
is unbounded.

if UNBOUNDEDLP(H, ¢} reports (H, ¢ } is unbounded

then Report the information and, ray along which (H, ¢) is
unbounded.

else Let hy,...,hy € H he the certificate halfplanes returned by
UNBOUNDEDLP, and let v, be their vertex of intersection

Compute a random permutation hy,,....h,

fori=d+1ton
doifv, eh;
then v, = v,
elsev, = the point p on gi that maximizes f ?p)
|f p does not exist
then report infeasible and quit.

Reurm v aa
Lecture 4: Computational Geometry Wy W 17

Linear Programming Prof. Dr. Th. Ottmann s

The d-dimensional linear programming problem with
n constraints can be solved in O(d!n) expected time

using linear storage.

Lecture 4: Computational Geometry .': -‘I. 18
Linear Programming Prof. Dr. Th. Ottmann W e

Range search

Orthogonal Range Searching Salary
Children
1. Linear Range Search : 1-dim Range Trees
2. 2-dimensional Range Search : kd-trees
3. 2-dimensional Range Search : 2-dim Range Trees
4. Range Search in Higher Dimensions Age
Input: Set of data points in d-space,
orthogonal (iso-oriented) query range R
Output: All points contained in R
Lecture 5: Computational Geometry . Lecture 5: Computational Geometry .
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
Binary search tree (1-dimensional) Binary leaf search tree
Lecture 5: Computational Geometry Fagan Lecture 5: Computational Geometry Fagan
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
Range search 1-Dimensional range query
Finding the split node for query range [x, x]
FindSplitNode (T, x, x")
v =root (T)
while not leaf(v) && (X" < v.x || x > v.x) —
if (x" < v.x) thenv = left(v)
else v = right(v)
return v
Running time : O(log n)
Note : Only O(log n) subtrees
fall into the query range.
Lecture 5: Computational Geometry Fage Lecture 5: Computational Geometry Fage
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py

Orthogonal Range Searching Prof. Dr. Th. Ottmann Pty

Example — Binary Search Tree

Query range: [22, 77]

Split node

Algorithm 1-d-range-search
1DRangeQuery (T, [x, x])
Ve = FindSplitNode (T, x, x')
if (leaf (V) && Vyy in R=[X, X])
then write v,

split split

splits
return;

v = left-child(vgy);

while (not leaf (v))

if(x<vx)
then write Subtree (right-child(v));
v= left-child(v);
else v = right-child(v)
if (vin R) write v ;

v = right-child(Vgpy,) -

Lecture 5: Computational Geometry . Lecture 5: Computational Geometry A 8
Orthogonal Range Searching Prof. Dr. Th. Ottmann W aa Orthogonal Range Searching Prof. Dr. Th. Ottmann W aa
Summary
Theorem

A 1-dim range query in a set of n points can be answered
in time O(log n + k) using a 1-d-range tree, where k is the
number of reported points which fall into the given range.

Proof :

FindSplitNode: O(log n)

Leaf search: O(log n)

The number of green nodes is O(k), since number of
internal nodes is O(k)

= O((log n)+k) total time.

Lecture 5: Computational Geometry g

Orthogonal Range Searching Prof. Dr. Th. Ottmann Pty

Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree,

which uses O(n) storage and has O(n log n) construction
time, such that the points in a query range can be reported
in time O(k + log n) , where k is the number of reported

points.
Lecture 5: Computational Geometry A% 10
Orthogonal Range Searching Prof. Dr. Th. Ottmann Pty

Orthogonal Range Searching

Range search

Salary

Children

1. Linear Range Search : 1-dim Range Trees 3
2. 2-dimensional Range Search : kd-trees
3. 2-dimensional Range Search : 2-dim Range Trees
4. Range Search in Higher Dimensions Age
Input: Set of data points in d-space,
orthogonal (iso-oriented) query range R
Output: All point contained in R
Lecture 5: Computational Geometry Fagan 1 Lecture 5: Computational Geometry Fagan
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
2 — dimensional range search .
9 Construction of kd-trees
p
4 5 9
Assumption : 2® 10
*
No two points have the same x- or » 7 . 12345 6789,10
y-coordinates .8 P P2
* 6
3
Lecture 5: Computational Geometry Fagan 3 Lecture 5: Computational Geometry Fagan
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
Construction of kd-trees Algorithm for building 2d-trees
BuildTree (P, depth)
5 0 if (|P| = 1) return leaf(P)
4 0 49 if (depth even) split P into P,,P,
2 "
2 N *10 3 through vertical median
87 ‘3 ’ 3 9%s else split P into P;,P, through
4 6 horizontal median
v, = BuildTree (P1, depth + 1)
v, = BuildTree (P,, depth + 1)
return (v4, median , v,)
Lecture 5: Computational Geometry AN s Lecture 5: Computational Geometry Fage
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py

Analysis

Theorem: The algorithm for constructing a 2d-tree uses O(n) storage
and can be carried out in time O(n log n)

Proof:
Space: 2d-tree is a binary tree with n leaves.
Time:

o(1), ifn=1
e |
O(n) + 2T(n/2) , ifn > 1

T(n) <=cn+2T(n/2)
<= cn + 2(cn/2 + 2T(n/4))
<=

= O(nlog n)

Lecture 5: Computational Geometry
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Nodes represent regions
1
5

Regions: Region(5) is left of 1 and
above 2

Incremental :

Region(left(v)) = left(v) N Region(v)

Lecture 5: Computational Geometry AN s
Orthogonal Range Searching Prof. Dr. Th. Ottmann Pty

Algorithm search in a 2d-tree

5 7
44 45 ‘9
— %0 5
8_1"’3 7 298
4 6

SearchTree(v,R)

if (leaf(v) && v in R) then write v; return
if (Region(left(v)) in R) then write Subtree(left(v)), return

if (Region(left(v)) N R <> &) then SearchTree(left(v), R)

if (Region(right(v)) in R) then write Subtree(right(v)),return
if (Region(right(v)) N R <> &) then SearchTree(right(v),R)

Analysis algorithm search in 2d-tree

Lemma : A query with an axis-parallel rectangle in a 2d-tree storing n
points can be performed in O(v/n + k) time, where k is the number
of reproted points.

Proof : B = # of blue nodes, G = # of green nodes
G(n) = O(Kk).
B(n) < # of vertical intersection regions V +
of horizontal intersection regions H
Line | intersects either the region to left of
root(T) or to the right.
This gives the following recursion:
V(n) =0O(1) ,ifn=1
=2+2V(n/4),ifn>1
V(nN)=2+4+8+ 16+ ...+ 2logn
=2+4+8+16+..+Yn=0(\n)

I
g T

Lecture 5: Computational Geometry Fagan 9 Lecture 5: Computational Geometry % 10
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
v Summary
of regions in a 2d-tree with n
points, which are intersected
by a vertical straight line. A 2d-tree for a set P of n points in the plane uses
O(n) storage and can be built in O(n log n) time.

(1)=

_ ‘ V(n)= 2+ 2V(n/4)

Lecture 5: Computational Geometry AN o
Orthogonal Range Searching Prof. Dr. Th. Ottmann Pt

A rectangular range query on the 2d-tree takes
0(\/;+ k) time, where k is number of reported points.

Lecture 5: Computational Geometry %
Orthogonal Range Searching Prof. Dr. Th. Ottmann Pt

Orthogonal Range Searching

Range Trees

Two Dimensional Range Search

y
1. Linear Range Search : 1-dim Range Trees - - .
2. 2-dimensional Range Search : kd-trees *2 * Assumption:
. . no two points have the
3. 2-dimensional Range Search : 2-dim Range Trees * | % same x or y coordinates
4. Range Search in Higher Dimensions AR O &
° *
*
T X
Lecture 5: Computational Geometry Lecture 5: Computational Geometry Fagan 2
Orthogonal Range Searching Prof. Dr. Th. Ottmann Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
Canonical subset of a node ;
Associated tree
P(v) = set of points of the
subtree with root v.
Y
X
Lecture 5: Computational Geometry Fagan Lecture 5: Computational Geometry Fagan 4
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py
Range tree for a set P Constructing range trees
T (x — sorted T'(v) (y - sorted)
For all nodes in T store entire
1. The main tree (1st level tree) is a balanced binary point information.
search tree T built on the x — coordiante of the All nodes y - presorted
points in P.
2. For any internal or leaf node v in T, the canonical Build2DRangeTree(P) /
subset P(v) is stored in a balanced binary search 1. Construct associated tree T” for the
tree T,e0c(V) ON the y — coordinate of the points. points in P (based on y-coordinates)
The node v stores a pointer to the root of T,¢.(V) 2. 1f (IP] = 1) then return leaf(P), T"(leaf(P))
which is called the associated structure of v. else split P into P1, P2 via median x
v1 = Build2DRangeTree(P1)
v2 = Build2DRangeTree(P2)
create node v, store x in v,
left-child(v) =v1,right-child(v) = v2
associate T" with v
p
Lecture 5: Computational Geometry Fage Lecture 5: Computational Geometry aN 6
Orthogonal Range Searching Prof. Dr. Th. Ottmann Py Orthogonal Range Searching Prof. Dr. Th. Ottmann Py

Lemma

Statement : A range tree on a set of n points in the plane
requires O(n log n) storage.

Proof : A point p in P is stored only in the associated
structure of nodes on the path in T towards the
leaf containing p. Hence, for all nodes at a given
depth of T, the point p is stored in exactly one
associated structure. We know that 1 — dimensional
range trees use linear storage, so associated
structures of all nodes at any depth of T together
use O(n) storage. The depth of T is O(log n).
Hence total amount of storage required is O(n log n).

Lecture 5: Computational Geometry
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Search in 2-dim-range trees
Algorithm 2DRangeQuery(T,[x : X x [y : y])
Vgpiit = FindSplitNode(T,x,x")
if (leaf(vgpy) & Vi is in R) then report v, return
else v = left-child(vgy;)
while not (leaf(v))
doif (x<x,)
then 1DRangeQuery(T ,¢s0c(right-child(v)),[y : y'])
= left-child(v)
else v =right-child(v)
if (vis in R) then report v
v = right-child(vg) ... Similarly ...

Lecture 5: Computational Geometry Fagan
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Analysis
Lemma: A query with an axis — parallel rectangle in a range

tree storing n points takes O(logn + k) time, where k is the
number of reported points.

Proof : At each node v in the main tree T we spend constant
time to decide where the search path continues and evt. call
1DRangeQuery. The time we spend in this recursive call is
O(log n + k,) where is k, the number of points reported in this
call. Hence the total time we spend is

ZO(logn +k,)

Furthermore the search paths of x and x'in the main
tree T have length O(log n). Hence we have

>"0(logn) = O(log” n)

Lecture 5: Computational Geometry Fagan 9
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Higher-dimensional range trees

"

Time required for construction:
Ty(n) = O(nlogn)
Ty(n) =O(nlog n)+ O(logn)* Ty4(n)
=T4(n) = O(nlog*' n)

Time required for range query (without time to report points):
Q,(n) = O(log? n)
Qy(n) = O(log n) + O(log n) *Q ¢4(n)
= Qq(n) = O(log? n)

Lecture 5: Computational Geometry % 10
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Search in Subsets

Given : Two ordered arrays A1 and A2.
key(A2) c key(A1)
query[x, x']

Search : All elements e in A1 and A2
with x < key(e) <

Idea : pointers between A1 and A2

Example query : [20 : 65]

Run time : O(log n + k)

Run time : O(1 + k)

Lecture 5: Computational Geometry AN o
Orthogonal Range Searching Prof. Dr. Th. Ottmann L

Fractional Cascading

ldea:P1cP,P2cP

[3 T10 19 [37 [62 [80 Jo9 |

[10 J19 Js7 Jso | [3_J62 J99

[19]80] [10]37] [3 Jeo] [62]

I\ [s0] [10] [57] I\

Lecture 5: Computational Geometry %
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Fractional Cascading

Theorem : query time can be reduced
to O(log n + k).

Proof : In d dimension a saving of one
log n factor is possible.

Lecture 5: Computational Geometry
Orthogonal Range Searching Prof. Dr. Th. Ottmann

Point Location

1. Trapezoidal decomposition.
2. A search structure.
3. Randomized, incremental algorithm for the

construction of the trapezoidal decomposition.

4. Analysis.
Lecture 6: Computational Geometry ',: '\. 1
Point Location Prof. Dr. Th. Ottmann Pl

Point location in a map

Lecture 6: Computational Geometry ',: '\. 2
Point Location Prof. Dr. Th. Ottmann Faidl

Partition of the plane into slabs

LA ime :

| I~ .Query time -O(Iog n)

K) binary search in x and then
>’ binary search in y direction.

= 4
\

NAL
\
‘l//

Storage space O(n?)

/\

\/

Partitioning into Trapezoids

Assumption :

Segments are in
~general position*

R 7'

Observation :

Every vertical edge has
one point in common
with a segment end.

Lecture 6: Computational Geometry AT 3 Tecture 6: Computational Geometry AT 4
Point Location Prof. Dr. Th. Ottmann Faidl, Point Location Prof. Dr. Th. Ottmann Faidl,
Observations

R 7

fis convex

fis bounded

Every non - vertical side
of fis part of a segment
of S or an edge of R

Lecture 6: Computational Geometry A 5
Point Location Prof. Dr. Th. Ottmann o ha’

Trapezoidal decomposition of set of line segments

I
/‘

Lemma : Each face in a trapezoidal map of a set S of line segments
in general position has 1 or 2 vertical sides and exactly
two non-vertical sides

Lecture 6: Computational Geometry A 6
Point Location Prof. Dr. Th. Ottmann ety

Left edge of a trapezoid

s For every trapezoid
> A eT(S), except the left
most one, the left vertical
edge of A is defined by a
segment endpoint p,
denoted by leftp(A) .

Lecture 6: Computational Geometry
Point Location Prof. Dr. Th. Ottmann

5 Cases (For left edge of a trapezoid)

a) b) leftp(a

top(a)

leftp(a) bottom(a)

c)
top(A) top(a)

leftp(A)
bottom(A)

bottom(A)
leftp(A)

e) ltis left edge of R. This case occurs for a single trapezoid of
T(S) only, namely the unique leftmost trapezoid of T(S)

Lecture 6: Computational Geometry ',: ‘\.
Point Location Prof. Dr. Th. Ottmann J /

Size of the trapezoidal map

Theorem: The trapezoidal map T(S) of a set of n line segments in
general position contains at most 6n + 4 vertices and at most 3n + 1
trapezoids.

Proof (1): A vertex of T(S) is either

- avertex of R or 4
- an endpoint of a segment in S or 2n
- a point where the vertical extension starting
in an endpoint abuts on another segment .
2*(2n)
or on the boundary R.
6n+4
Lecture 6: Computational Geometry 9
Point Location Prof. Dr. Th. Ottmann

Size of the trapezoidal map

Theorem: The trapezoidal map T(S) of a set of n line segments in
general position contains at most 6n + 4 vertices and at most 3n + 1
trapezoids.

Proof (2): Each trapezoid has a unique point leftp(A), which is

- the lower left corner of R 1
- the left endpoint of a segment (can be 2
leftp(A) of at most two different trapezoids) n
- the right endpoint of a segment (can be
leftp(A) of atmost one trapezoid) n
3n+1
Lecture 6: Computational Geometry ',: ‘\. 10

Point Location Prof. Dr. Th. Ottmann

Point Location

1. Trapezoidal decomposition.
2. A search structure.
3. Randomized, incremental algorithm for the

construction of the trapezoidal decomposition.

4. Analysis.
Lecture 6: Computational Geometry ',: '\. 1
Point Location Prof. Dr. Th. Ottmann Pl

Point location in a map

Lecture 6: Computational Geometry ',: '\. 2
Point Location Prof. Dr. Th. Ottmann Faidl

Partition of the plane into slabs

LA ime :

| I~ .Query time -O(Iog n)

K) binary search in x and then
>’ binary search in y direction.

= 4
\

NAL
\
‘l//

Storage space O(n?)

/\

\/

Partitioning into Trapezoids

Assumption :

Segments are in
~general position*

R 7'

Observation :

Every vertical edge has
one point in common
with a segment end.

Lecture 6: Computational Geometry AT 3 Tecture 6: Computational Geometry AT 4
Point Location Prof. Dr. Th. Ottmann Faidl, Point Location Prof. Dr. Th. Ottmann Faidl,
Observations

R 7

fis convex

fis bounded

Every non - vertical side
of fis part of a segment
of S or an edge of R

Lecture 6: Computational Geometry A 5
Point Location Prof. Dr. Th. Ottmann o ha’

Trapezoidal decomposition of set of line segments

I
/‘

Lemma : Each face in a trapezoidal map of a set S of line segments
in general position has 1 or 2 vertical sides and exactly
two non-vertical sides

Lecture 6: Computational Geometry A 6
Point Location Prof. Dr. Th. Ottmann ety

Left edge of a trapezoid

| For every trapezoid
7 A eT(S), except the left
most one, the left vertical
edge of A is defined by a
segment endpoint p,
denoted by leftp(A) .

Lecture 6: Computational Geometry A 7
Point Location Prof. Dr. Th. Ottmann

5 Cases (For left edge of a trapezoid)

b) leftp(A
3)) top()

leftp(a) bottom(a)

c)
top(A) top(a)

leftp(A)
bottom(A)

bottom(A)
leftp(A)

e) ltis left edge of R. This case occurs for a single trapezoid of
T(S) only, namely the unique leftmost trapezoid of T(S)

Lecture 6: Computational Geometry ',: '\. g
Point Location Prof. Dr. Th. Ottmann s /

Size of the trapezoidal map

Theorem: The trapezoidal map T(S) of a set of n line segments in
general position contains at most 6n + 4 vertices and at most 3n + 1
trapezoids.

Proof (1): A vertex of T(S) is either

-avertex of R or 4
- an endpoint of a segment in S or 2n
- a point where the vertical extension starting
in an endpoint abuts on another segment 2% (2n)
or on the boundary R.
6n+4
Lecture 6: Computational Geometry ',: '\. 9

Point Location Prof. Dr. Th. Ottmann

Size of the trapezoidal map

Theorem: The trapezoidal map T(S) of a set of n line segments in
general position contains at most 6n + 4 vertices and at most 3n + 1
trapezoids.

Proof (2): Each trapezoid has a unique point leftp(A), which is

- the lower left corner of R 1
- the left endpoint of a segment (can be 2
leftp(A) of at most two different trapezoids) n
- the right endpoint of a segment (can be
leftp(A) of atmost one trapezoid) n
3n+1
Lecture 6: Computational Geometry ',: '\. 10
Point Location Prof. Dr. Th. Ottmann s /

Adjacent trapezoids

Two trapezoids A and A" are adjacent if they meet
along a vertical edge.

1) Segments in general position : “
A trapezoid has atmost four
adjacent trapezoids

ot

2) Segments not in general position:
A trapezoid can have an arbitrary
number of adjacent trapezoids.

Lecture 6: Computational Geometry '.: ‘\. 11
Point Location Prof. Dr. Th. Ottmann d

Vertical neighbors:Upper, lower left neighbor

/ Trapezoid A' is (vertical) neighbor of A

top(A) = top(A’) or bottom(A) = bottom(A’)

In the first case A" is upper left neighbor
of A, in the second case A’ is lower left
neighbor of A.

Lecture 6: Computational Geometry ',: ‘\. 12
Point Location Prof. Dr. Th. Ottmann s d

Representing trapezoidal maps

There are records for all line segments and endpoints of S,
the structure contains records for trapezoids of T(S), but
not for vertices or edges of T(S).

The record for trapezoid A stores pointers to top(A), and
bottom(A) , pointers to leftp(A) and rightp(A) and finally
pointers to its atmost 4 neighbors.

A'is uniquely defined by top(A), bottom(A), leftp(A) and
rightp(A).

Lecture 6: Computational Geometry A 13
Point Location Prof. Dr. Th. Ottmann

A search structure

2r

End points decide between left, right
Segments decide between below, above

Lecture 6: Computational Geometry A 14
Point Location Prof. Dr. Th. Ottmann

Example : Search structure

A randomized incremental algorithm

Input : A set S of n non-crossing line segments
Output : The trapezoidal map T(S) and a search structure D(S)

for T(S) in a bounding box.
A B Determine a bounding box R, initialize T and D
1r
" Compute a random permutation s4,s,, ..., s, of the elements of S
Fle
2| fori=1ton
2r do add s; and change T(S; _4) into T(S;) and D(S;) into D(S))
C E

Invariant :
In the step i T(S)) is correct trapezoidal map of S;
and D(S)) is an associated search structure.

Lecture 6: Computational Geometry AT 5 Cecture 6: Computational Geometry AT 6

Point Location Prof. Dr. Th. Ottmann Faidl, Point Location Prof. Dr. Th. Ottmann Faidl,

A randomized incremental algorithm Questions

Input : A set of n non-crossing line segments
Output : The trapezoidal map T(S) and a search structure D
for T(S) in a bounding box.

Determine a bounding box R, initialize T and D
Compute a random permutation s4,s,, ..., s, of the elements of S

fori=1ton

do Find the set A, Ay, ..., A of trapezoids in T properly
intersected by s;.
Remove A, A,..., A from T and replace them by new
trapezoids that appear because of the intersection of s;.
Remove the leaves for Ay, A,,..., A, from D and create
leaves for the new Trapezoids.
Link the new leaves to the existing inner nodes by adding
some new inner nodes.

Lecture 6: Computational Geometry A 17
Point Location Prof. Dr. Th. Ottmann

How can we find the intersecting trapezoids?

How can T and D be updated
a) if new segment intersects no previous trapezoid
b) if new segment intersects previous trapezoids

Lecture 6: Computational Geometry A 18
Point Location Prof. Dr. Th. Ottmann

Finding the intersecting trapezoids

. Ay is lower right neighbour of A

In T(S;) exactly those trapezoids are changed,
which are intersected by s;
if rightp(4y) lies above s,
then Let A;,4 be the lower right neighbor of A
else Let A4 be the upper right neighbor of A
Clue :
A, can be found by a query in the search structure D(S;)
constructed in iteration stage i -1.

Lecture 6: Computational Geometry e 19
Point Location Prof. Dr. Th. Ottmann sl

New segment completely contained in trapezoid

Decomposition

Search structure

4 new trapezoids, -1 old trapezoid,
search depth + 3

Lecture 6: Computational Geometry e 20
Point Location Prof. Dr. Th. Ottmann sl

New segment intersects previous ones

Search structure

6 new trapezoids, — 4 old,

Estimation of the depth of the search structure

Let S be a set of n segments in general position,
q be an arbitrary fixed query point.
Depth of D(S):
worst case : 3n,

average case : O(log n)

Consider the path traversed by the query for q in D

Let X; = # of nodes on the search path for q created in
iteration step i.

X <=3

P; = probability that there exists node on the search
path for g that is created in iteration step i.

depth + 2 EX]<=3P,
Lecture 6: Computational Geometry AT 2 Cecture 6: Computational Geometry i 2
Point Location Prof. Dr. Th. Ottmann Fails Point Location Prof. Dr. Th. Ottmann Fails
Observation
Iteration step i contributes a node to the search path for q exactly if Probltop(A4(S;))] = Prob[bottom(A4(S;))] = 1/i.
Aq(S; . 1), the trapezoid containing q in T(S;), is not the same as . i .
Aq(S) , the trapezoid containing q in T(S)) Prob[leftp(A,(S)))] disappears is at most 1/i.
Pi = Pr{Ay(S) # Ay(Si_)] Problrightp(A4(S))] disappears is at most 1/i.
If A4(S;) is not same as A(S;_+), then Ay(S;) must be one of the
trapezoids created in iteration i. _ -
A4(S;) does not depend on the order in which the segments in S; Pi= PriAq(S) # Aq(Si-1)] = PrA(S) & T(S;.)]
have been inserted. <=4fi
Backwards analysis : ,. n " 12 n]
E{ZM}SZ}RSZf:IZZ—_:IZHU =0(logn)
We consider T(S;) and look at the probability that A4(S;) disappears = P ol ol
from the trapezoidal map when we remove the segment s;.
Aq(S)) disappears if and only if one of top(A4(S;)), bottom(A,(S))),
leftp(Aq(Sy)), or right(A,(S;)) disappears with removal of s; .
Lecture 6: Computational Geometry '.: ‘_ 23 Lecture 6: Computational Geometry '.: ‘_ 24
Point Location Prof. Dr. Th. Ottmann Fadr Point Location Prof. Dr. Th. Ottmann Fadr

Analysis of the size of search structure

Leaves in D are in one — to — one correspondence with the
trapezoids in A, of which there are O(n).

The total number of nodes is bounded by :

CXn)+Z (# of inner nodes created in iteration step i)

i=l

The worst case upper bound on the size of the structure

o(n)+§o(i)= 0(n?)

Analysis of the size of search stucture
Theorem: The expected number of nodes of D is O(n).

Proof: The # of leaves is in O(n). Consider the internal nodes:
X; = # of internal nodes created in iteration step i

] -1
E[Z‘L‘} => ¥[w]
1 i) i)
§(A,): { if A disappears from T(S;) when s is removed from S;

0 otherwise

There are at most four segments that cause a given trapezoid
to disappear

> Y s(A,s)<4r(si)=0()

seSi AeT (Si)
Tecture 6: Computational Geometry AT > Tecture 6: Computational Geometry AT >
Point Location Prof. Dr. Th. Ottmann Fadls Point Location Prof. Dr. Th. Ottmann Fadls
Summary

=13 3 s(as)< 2D o)

U 5esi AeT (1) 1

The expected number of newly created trapezoids is O(1) in
every iteration of the algorithm, from which the O(n) bound
on the expected amount of storage follows.

= E{Z}: Xx} =0(n)

Let S be a planar subdivision with n edges. In O(n log n)
expected time one can construct a data structure that
uses O(n) expected storage, such that for any query

point g, the expected time for a point location query is

Lecture 6: Computational Geometry A 27
Point Location Prof. Dr. Th. Ottmann et

O(log n).
Lecture 6: Computational Geometry ',: ™ 28
Point Location Prof. Dr. Th. Ottmann sl

An overview of Lecture 7.1

Definitions: Convex set, Extreme point, Con-
vex Hull

Lower Bound

Point Pruning

Edge Pruning

Jarvis March

Graham’s Scan

Summary

Definitions: Convex set,
Extreme point

o A set S C E? is convex iff for every pl, po €
S, the segment pipo is completely within S.

e A point p in a convex set S is said to be
extreme iff there is no segment ab C S with p
in its interior.

Problem Formulation

Given: Aset P ofn points in the plane.

FiNnd: smallest convex set containing P. It
iIs called the convex hull of P, and is de-
noted by CH(P).

o T
-~
; .«
/ N
/ . . \
/ W
/ /
/ o /
¢ ¢ ’
’ /
\ o o
\ /
\ /’
\@ p
\ O /
\ <

Problem Formulation

e Since P is finite, the boundary of CH(P) is
a simple polygon with a subset of points of P
as its extreme points(corners).

e CH(P) is considered determined once its ex-
treme points, ordered around the boundary are
found.

e Simplifying assumption: No pair of points
has the same x- or y-coordinate.

Equivalent Definitions of
Convex Hull

e A convex combination of points p; = (x1,y1),
p> = (x2,y2),...,pn = (xn,yn) iS @ point ¢ =
a1(r1,y1) + az(x2,y2) + ... + an(zn, yn) with
«; > 0 and 2?21047;: 1.

In other words,

q=>1_qo;p; With a; >0 and > ;a;,=1.

Example: Convex combination of two points
p and q.

Equivalent Definitions of
Convex Hull

e Let P be a set of n points. A point g in
CH(P) is the convex combination of its ex-
treme points

Equivalent Definitions of
Convex Hull

e intersection of all convex sets containing PF.

R P :
o = I
I -~
/ Q |
I N
I / S I
/ . N\
1, O \.I
| / 7
1/ [/ I
‘ . / |
I) o / I
Y ‘ |
\ /
Ly / '
/ I
@ / |
\ O /
I \ © |
| .

Equivalent Definitions of
Convex Hulls

e intersection of all half-planes containing P.

/ .~ -
N\ ” \
l——”.‘~~‘
- -~
——’, b\\\\
// \\ S <
Vs
/ o ¢ \”\
/
v, / N
\ o % .
/ O P
' Vs
;N o O
/ \ y,
/ \ %
/ \, //
\ . _ - - = =
_-®--- y,

b

a1x+a2y>b

L ower Bound

e Sorting of real numbers can be transformed
in linear time into the convex hull problem.

2)

— (x;, x:

e Transformation: x;

X

y:

X3 X7 X2 X6

x4 x5 x1

L ower Bound

e Enumerating the extreme points around the
convex hull is equivalent to sorting the points

L1,T2,XL3,T4,X5,Tq-

eSatingequirgd(nlogptimeHenceCon-
vex hullproblemmusthavethesamelower
bound.

Left and Right Turns

e A sequence {p1, po, p3} of points makes a
right turn at po iff p3 is to the right or on the
line through p1 and po>(when looking from pq
towards po).

e Otherwise {p1, po, p3} makes a left turn
at po

P1 = (x1,yl)

Left and Right Turns

o Consider Apipop3 . The double of its area
(disregarding the sign) is

r] y1 1
ry Yy 1
r3 y3 1
P, = (x4,y4) L/
o ’
7 P3=(x3,y3)
y ®
/
)

e The sign is + iff {p1, po, p3} appears
in the counterclockwise order on Apipop3 .

Hence, {p1, p2, p3} turns left at po.

Point Pruning

e A point p € P is not extreme in CH(P) iff
Hpi, pjs P} € P—{p} :p € Ap;pjpyi,

Finding all Extreme Points

Pk i

0

Py

-]

=U

15

o p € Ap;p;jpj can be verified in O(1) time;
{pi,rj,p} . Apj,Pr, P} and {pg,p;,p} are
all left turns if we traverse Apipjpk in the
anticlockwise direction.

If p € Ap;p;pk
then
eliminate p

Algorithm-Point Pruning

Algorithm: For each triangle, we test in O(n)
time whether all the remaining points are inside
or outside the triangle.

e In the worst-case, there are O(n3) triangles
to consider.
e Overall complexity: O(n%)

Improved Point Pruning

O
O
® O
O
% ®--
--@ - ® P
i ®
O o ®
® o

e Can be improved to O(n?) by fixing p; and
p; to the leftmost point p; and rightmost
point pr. Both p; and py are extreme
points and can be found in O(n) time.

Sorting of Extreme Points

e It remains to sort the extreme points.

Sorting of Extreme Points

Methodl

o Hq: half-line rooted at a point g in the
interior of a convex set S.

o I, intersects the boundary of S in exactly
one place(for all possible directions).

Sorting of Extreme Points

e Sort extreme points of P in increasing or-
der of their polar angles around a point ¢
known to be in the interior of CH(P) . Re-
quires O(nlogn) time.

e Interior point: centroid of the extreme points:

(qz, qy) = (> zi/n, > yi/n)
=1 =1

where p;, = (x;,vy;). Requires O(n) time.

Sorting of Extreme Points

Method?2

e Draw a line L through p; and pr.

e Partition the remaining extreme points into
two groups:

A: extreme points above L.

B: extreme points below L.

e Sort A by decreasing x-coordinate.
e Sort B by increasing x-coordinate.
e All this can be done in O(nlogn) time.

Edge Pruning

e General idea: Identify boundary edges rather
than extreme points.

e A segment between two points of P is a
boundary edge iff all remaining points of
P are on one side of the line through the
segment.

L1

Edge Pruning

e Algorithm: For each pair of P-points p; and
pj, check in O(n) time if all the remaining
points of P are on the same side of the line
through p; and p;.

e Number of pairs is O(n?). All boundary edges
can be identified in O(n3) time.

e End points of boundary edges are extreme
points. They need to be sorted. This can be
done in O(nlogn) time.

Jarvis's March(1973)

e Can we improve the O(n3) edge pruning al-
gorithm?

Observation

e When a boundary edge p;p; has been iden-
tified there must exist another boundary
edge with p; as one of its endpoints.

Jarvis’'s March

General idea: use one extreme edge as an
anchor for finding the next.

° o h Fé
® o o /
‘ ® o -
® o ’r =T
RIUREEL S
P

e [he algorithm output the extreme points in
the order in which they occur around the hull
boundary.

Jarvis’'s march is also known as

gift wrapping method

Jarvis's March - Continued

e Find the point p1 with lowest y-coordinate.
e Find the point p> such that its polar angle
with pq as origion is smallest possible.
e Find the point p3 such that its polar angle
with po as origion is smallest possible.

P5 _—\::‘ P4 //
- e - < ,
/’// \\\ /
/
! /
/
/.\\ /
/ \ / -
/ \ ; -
\ ’/’”/
\\\ —””” P2 o
_________ _Q—_’_’_______________
\
P

e Continue until the point of P with highest
y-coordinate has been identified.
" Turn around " and repeat.

Time Complexity of Jarvis’s
March

e To find the points p1 and po takes O(n)

time.
"5 P4
o o«
. R
- —”"‘F;z_ _______
_________ ‘,_,__________
P

e To find each next hull vertex p;, we spend

O(n) time.

Time Complexity of Jarvis’s

/
~
e -~ R ,
P -7 S S /
S oY
///;,/ \’
- / , %
/ /
K /
/ N\ //
/ \ -
/ \ y ””
\ ’/’”/
\\ ”””’ P2
\ L
_________ & - ——-—-=-—-—--"
\
Py

e Ifthe number of extreme points(and bound-
ary edges) is k, then the time complexity

of Jarvis’s march is O(nk).

e If the number of extreme points k is small

compared with O(n), i.e., if k is bounded
by a constant, then Jarvis's March runs in

linear time.

e Jarvis's march can be generalized to higher
dimensions.

How to improve Jarvis’s
Algorithm

In Jarvis’s algorithm, each time

e Based on the recent hull vertex p and the
most recent hull edge e, we find the next
hull vertex by choosing the point p’ which
makes the angle between e and pp’ largest.

How to improve Jarvis’s

Algorithm
o ©® ®
¢ . el
‘) . “///)

e A possible improvment is that we presort
the points in some way so that once we
find a point is not qualified for the next hull
vertex, then we exclude the point forever.

Algorithm-Graham’s Scan
(1972)

e Determine an interior point g of CH(P).

e Sort the points of P around g by non-decreasing
polar angles. If several points of P have the
same polar angle, sort by increasing distance
from q.

e Let S be the polygon through all the points
of P so that the appear in the sorted order in
the counterclockwise traversal of P.

Graham’'s Scan

o Identify the leftmost point of P. Denote it
by p(p— be the predecessor of p and p+ be
the successor of p on P).

- +
If {p ,p,p} makes aleftturn atp
then p:= p+
else remove p and set p=p

Graham's Scan-Continued

e It is not necessary to determine q.

Graham's Scan-Correctness and
Complexity

Graham’s scan will never go backward be-
hind the initial leftmost point of P.

e When arriving at some point p, all points
between the initial point and p are left turns
on the polygon.

Graham's Scan-Correctnhess and
Complexity-Continued

e After arriving the initial leftmost point (by
forward step), P has left turns only (it is
convex).

e Number of backward steps is O(n): during
each backward step one point is removed
from P.

e Number of forward steps is also O(n): Since
there are only O(n) points in the set.

e Both forward and backward steps require
O(1) time.

Graham's Scan-Correctnhess and
Complexity-Continued

e Graham'’s scan requires O(n) time after the
points of P have been sorted in O(nlogn)
time.

e Graham’s scan can be regarded as a modi-
fication of point pruning.

Convex Hulls in the Plane -

Summary

Point pruning

Edge Pruning

Jarvis’s march

Graham’s scan

An overview of Lecture 8

Review of Lecture 7

Quick Hulls

Divide and Conquer

Randomized Incremental Sorting Algorithm

Randomized Incremental Convex hull Algo-
rithm

Summary

Review of Lecture 7

CONVEX HULL : Given an arbitrary set P of
n points of EY, the convex hull CH(P) of P
IS the smallest convex set containing P.

-
- ~
-~y
he o
\
/ \
/ . . \
II ‘
/
/ . /
$ o ‘
/
\ o o6
\ /
\ /
/
\\. o ,
/
\ O

e The set F of extreme points is the smallest
subset of P having the property that CH(P)
— (CH(FE) and E is precisely the vertices of P

Review of Lecture 7

Two steps are required to find the convex hull
of a finite set:

(1). Identify the extreme points.

(2). Order these points so that they form a
convex polygon.

,,—"~\
- ~
-~
hd L\
\
/ N
/ . . \
II b
/
/ . /
¢ o ‘
/
\ o O
\ /
/
\\. p
\ . d
/
\ 5

Convex hulls again

If improvements are to made in the algorithm,
them must come

e either by eliminating redundant computa-
tions (Point pruning, Edge pruning, Jarvis's
march and Graham'’s scan).

e Or by taking a different theoretical appraoch.
Divide and Conquer algorithms :
e Quickhull
e Mergehull

e Randmozied Incremental Convex Hull

Quickhull Technigques

Quicksort : Given an array of n numbers |
e partition it into a left and right subarry, such
that each number in the first is less than each

number of the second.

e recursively call the above subroutine.
e merge the two sorted sublists.

89‘ 80‘ 79‘ 71‘68

65‘ 59‘ 27‘ 5

)

e Quickhull is the analogue of the Quicksort

algorithm.

0

Quickhull Algorithm(1977)

e General idea: discard the points that are not
on the convex hull as quickly as possible.

QuickHull’s Initial quadrilateral

Quickhull Algorithm

e First compute the points with maxmimum
and minimum x- and y-coordinates.

e T he points lying within the quadrilateral
XoninYminXmazYmaz can be elimated in O(n)
time.

e Classify the remaining points into four corner
triangles.

Xmax

min

Quickhull Algorithm -
Continued

QuickHull Elimination Procedure:

e Find the leftmost and the rightmost points
py and pr.

e Partition the remaining points into two sub-
sets A and B depending on whether they
are above or below the line L through p;
and pr.

UpperHull(A, p;, pr)

e Consider A. If A =1, then p;pr is a bound-
ary edge.

UpperHull(A, p;, pr)

o If A # (), then determine a point pj such
that Ap;prp;, is largest possible. If there
are several candidates for pj;, select the
leftmost one.

UpperHull(A, p;, pr)

pp, IS an extreme point of CH(P).

QuickHull

e Prune the points of P in Ap;prpy, -

e Subdivide the remaining points in A into
two subsets A; and Ag by drawing the lines
through p; and p;, as well as through py
and pj, and repeat for Ay and Ag.

e Repeat for B.

QuickHull-Algorithm

UpperHull(P, p;, pr)

begin
If P={p;,pr} then return (p;,pr) .
else begin
pp, = Furthest(P, [, 1) ;
(furthest to line p;pr)
Ay = points of P on or to the

left of (p;,pp)
AR = points of P on or to the

right of (py;pr)
(Recursively call UpperHull(Ay,p;,p,) and

UpperHu”(ARaphapT))
return UpperHull(A;,p;,pp,) *

UpperHU”(AR,ph, Dr)
end
end.

QuickHull-Complexity

e The extraction from P of A (and B) includ-
ing the elimination of points internal to the tri-
angle Ap;prp;, carried out in O(n) time.

e If the size of A and B is at most equal and
this holds at each level of recursion,
complexity O(nlogn).

e Worst case complexity : O(n?) as partition-
ing can be very uneven.

Convex Hull by Divide and
Conquer

e O(nlogn) algorithm.
e can be viewed as a generalization of merge
sort

Upper tangent

lower tangent

Divide and Conquer(1978)

Upper tangent

lower tangent

e Solve directly if |P| < 2. Return .

e Partition P into two " equal size " subsets
P1 and P>. where P consists of points with
the lowest x-coordinates and P> consists of
the points with the highest x-coordinates.

Divide and Conquer-Continued)

o Determine (recursively) CH(P1) = Hp, and
CH(Py) = Hp,.

e Merge the two solutions to obtain CH(P),
by computing the upper and lower tan-
gents for Hp and Hp, and discarding all
the points lying between these two tan-

gents.

Computation of Lower Tangent

e Initialize a to be the rightmost point of P4
and b is the leftmost point of P, (The
points a and b can be found in O(n) time).

Computation of Lower Tangent

e Lower tangency is a condition that be tested
locally by an orientation test of the two ver-
tices and neighboring vertices on the hull.

Computation of Lower Tangent

ab is not atangent to
CH(P2)

Computation of Lower Tangent

ab is not atangentto CH(E)

Computation of Lower Tangent

Lower-Tangent(Hp,, Hp,);

(1) a:=rightmost vertex of Hp,;

(2) b:=leftmost vertex of Hp,;

(3) while ab is not lower tangent of both

le and Hp2

do

(a) while ab is not a lower tangent
to le

do a :=a—1;
(move a clockwise)
(b) while ab is not a lower tangent
to Hp2
do b :=b+ 1;
(move b counterclockwise)
Return ab.

The important thing is each vertex on each
hull can be visited atmost once by the search,
and hence the running time is O(m) where

m = |Hp,| + [Hp,| < |P1| + | 1] -

Time Complexity of Divide and
Conquer

o Complexity:

] O(1) n =2
fn) = { 2f(n/2) + O(n) n> 2

e It is well-known that such a recursive func-
tion is nlogn

e Thetangents can be computedin O(n) time.

Randomized incremental
construction

We use a technique called randomized incre-
mental construction for designing a ran-
domized algorithm for convex hull.

This technique is very useful for designing
randomized geometric algorithms.

We use a random permutation of the input
and the the resulting algorithm is a Las
Vegas algorithm. It always produces the
correct result.

We will try to estimate the expected running
time of the algorithm.

A randomized sorting algorithm

Input : A set of n unsorted numbers.

Output : A sorted set of these n numbers.

e We sort the numbers incrementally. At every
step, a random input is chosen and added
to the sorted set.

e Hence after step i, we have a sorted set of 1
numbers and an unsorted set of n —7 num-
bers.

e For adding the next input efficiently, we use
the idea of a conflict list.

A randomized sorting algorithm

points already sorted

AN

3 - 3

/

conflict lists

e After the :-th step, cosider the n—12 unsorted
points.

e Each of these unsorted points will be in one
of the 71+ 1 intervals defined by the 7 sorted
points.

e With each interval between two adjacent sorted
points, we keep a list of all the unsorted
points in that interval. This is called a
conflict list.

How do we maintain the
conflict lists?

e Consider the first point p; that we choose
from the n unsorted points.

e p1 introduces two intervals I; and I, for all
the unsorted points.

e \We compare each unsorted point p, with py
and keep a pointer either to I; or to I».

How do we maintain the
conflict lists?

e We also keep a list of all the points that are
in 77 and in I>. These are the conflict lists.

e Suppose we randomly choose p;. as the next
point to be added to the sorted list.

How do we maintain the
conflict lists?

e From the pointer stored with p,. we can de-
termine in O(1) time, p; should be added
to which interval 17 or I>.

e Suppose p;. goes to 1. I is divided into two
intervals I3 and I, due to py.

How do we maintain the
conflict lists?

e We have to create two new conflict lists for
I3 and I from the conflict list for I;.

e \We do not need to do anything with the con-
flict list of I».

Maintaining Conflict List

e We maintain a pointer for each number yet
to be inserted in the sorted list.

e After the :-th step, the pointer for each unin-
serted number specifies which of the 1 4+ 1
intervals in the sorted list it would be in-
serted into, if it were next to be inserted.

e The pointers are bidirectional, so that given
an interval we can determine the numbers
whose pointers point to it.

Updating the Conflict List

e what is the work required to maintain these
pointers.

e Suppose we insert a number =z whose pointer
points to interval I.

e On inserting =, we have three tasks.

(1). find all numbers whose pointers point to
I.

(2). update the pointers of all numbers whose
pointers point to /.

(3). delete the pointer from z to I.

unsorted points

Complexity for updating the
conflict list

The important task is (2)..

e The work done in this update step is propor-
tional to the number of pointers pointing to
I.

unsorted points

Complexity analysis

When we have added all the n inputs, we
have the sorted set.

We add a new random point at each step
in O(1) time, but we do a lot of work for
changing the conflict lists.

Suppose we have already added 7 points and
we are trying to add the 7z + 1-th point.

The 1+ 1-th step consists of choosing of one
the n — ¢ yet unsorted numbers uniformely
at random, and inserting it into the sorted
list.

Complexity analysis

e We have to estimate what is the expected
cost for the addition of the ¢+ + 1-th point.

e We use a technique called backward analysis
to estimate this.

e This has already been used in the course
Design and Analysis of Algorithms(LP in
two dimensions and constructing the trape-
zoidal decomposition for a set of line seg-
ments).

Backward analysis

e When we have a set of objects, it is easier
to estimate the expected cost of choosing
one object from the set.

e But it is difficult to estimate the cost of
adding a new object which is not in the
set.

Backward analysis

e In our case, if we want to estimate the cost
of adding the 7 + 1-th input to the sorted
set of 72 points.

e But the 1+ 1-th input is not in the sorted set
of 72 points.

e SO we go backwards!

Backward analysis

e We estimate the cost of deleting a random
input from a sorted set of + + 1 inputs.

e There are n—1— 1 unsorted points and 2+ 2
intervals before the deletion.

Backward analysis

e Remember that the numbers were added ran-
domly in the original algorithm.

e SO in the backward analysis we can assume
that each of the 7 + 1 numbers is equally
likely to be deleted.

e After the deletion, there are n — ¢ unsorted
points, 7 sorted points and 7 + 1 intervals.

Backward analysis

e The expected number of unsorted points in
one interval is : number of unsorted points

divided by number of intervals. This is

nt = 0(h).

e \We have to change the pointers for all these
points for updating the conflict list after
the deletion of the 2 4+ 1-th point.

e Hence this is the work done for the deletion
of the 7+ + 1-th point.

Summing over all the steps, the expected to-
tal work is @ >, O(%)

e From linearity of expectation, this is :

O(> n/i) =0(n > 1/i) = O(nlogn)
1=1 1=1

A randomized algorithm for
convex hull

Input : A set P = pq,po,...,pn Of n points.

Output : The convex hull of the n points.

begin

1. Choose any three points from the input
and construct the covex hull conv(S3).

A randomized algorithm for
convex hull

2. Do the following for n — 3 time steps :

Add a randomly choosen point to the existing
convex hull and update the convex hull.

CH(Si)

Incremental convex hull

A randomized algorithm for
convex hull

We have to specify :

e How do we add a randomly chosen point cor-
rectly?

e What are the conflict lists in this case~?

e How do we update the conflict lists?

Initial Conflict List

For creating the conflict lists :

e We choose a point pg inside conv(S3).

e Connect the n — 3 points to pg.

Conflict lists

e For a point p;, if the line pgp; intersects edge
€1,

(1). We keep a pointer to e with the point
Py -

(2). We include p; in the conflict list of ej.

e SO we start with three conflict lists.

Conflict lists

conflict list fok €

ﬂ\ ~>Conf|ict list for &

conflict list for)

Adding a new point

Suppose we are adding a new point p; to conwv(.S;)
which is the convex hull with 2 points.

(1)

e In O(1) time we can determine that p, be-
longs to the conflict list of edge e,,.

e In the first case, p. is on the same side of e,
as po. Since p;. is inside conv(S;), we reject

Pk-

Adding a new point

e We are trying to construct conv(S;4+1) from
conv(S;) after the addition of p,.

e There are three kinds of edges after p; Is
inserted :

(1). Edges which are unaffected
(2). Edges which should be deleted

(3). Edges which should be added

Y

added deleted

\\l}laffecte/d

Adding a new point

We keep the convex hull vertices in a doubly
linked list so that we can move in both
directions through the list.

Moving in both directions, we can find two
vertices v; and v; such that pypov; and pgv;
are tangents to conv(S;). Two new edges
e; and e; are added.

All the points in between v; and v; in conv(S;)
are rejected.

v; and v, are the neighbors of p; in

conv(S;41).

Adding a new point

e We have to update the conflict lists of all
the edges we throw away.

e Consider an edge like e4. All the points which
are in the conflict list of ¢4, should be in-
cluded in the conflict list of e;.

e Each such point will be added either to the
conflict list of e; or to the conflict list of e;
in O(1) time.

Complexity analysis

e At most two edges are created at each step.
Hence, the total work done for creating or
deleting edges is 2n. An edge may e cre-
ated once and deleted once.

e The work done for adding a point p, is pro-
portional to

(1). the work done for adding the point,
and

(2). the work done for updating the con-
flict lists

e We will estimate the expected work done
through backward analysis.

Backward analysis

Pm
€m Cm+1

conv(§49)

e In backward analysis, consider the deletion of
a point from conv(S;41) to get conv(S;).

e Suppose we are deleting a point p,,. If we
delete p,,, we have to delete two edges e,

and Cm-+1-

e Since there are i+1 points in conv(S;11), the
probability of choosing a point randomly is
1

7"

Backward analysis

There are n—1 points yet to be added to the
convex hull.

Hence, the expected number of points in the
conflict list of edge e, and e, 1 are “— =

This is the expected work done for deleting
the point pn,.

Summing over all the steps, the expected
total work is @ 3", O(%)

From linearity of expectation, this is :

O(> n/i) =0(n > 1/i) = O(nlogn)
1=1 1=1

Convex Hulls in the Plane -

Summary

Point pruning ..

Edge Pruning

Jarvis’s march .

Graham’s scan

Quickhull

Convex Hulls in the Plane -

Summary
o Divide and Conquer O (nlogn)
¢ Randomized Incremental expected

time complexity O(nlogn)

Voronoi Diagrams

« Definition
« Characteristics
« Size and Storage

« Construction

The Voronoi Diagram

* Use
Lecture 8: Computational Geometry AT 1 Lecture 8: Computational Geometry AT
Voronoi Diagram Prof. Dr. Th. Ottmann e Voronoi Diagram Prof. Dr. Th. Ottmann & e’
Voronoi Regions Example

Eucledian distance :

dist(p,q) := (p—aF+(p—a)

Let P :={p,p,,....p,} be a set of n distinct points in a plane.

We define the voronoi diagram of P as the subdivision of the plane
into n cells, with the property that a point q lies in the cell correspon-
ding to a site p; ff dist(q,p;) < dist(q,p) for each p; & P with j =i.

We denote the Voronoi diagram of P by Vor(P).
The cell that corresponds to a site p; is denotd by V(p), called the
voronoi cell of p;.

Lecture 8: Computational Geometry AT 3

Voronoi Diagram Prof. Dr. Th. Ottmann < et

V(p) = Nigjgn,j=i NPLP)

° °
9q q,
[]
P
° (]
94 q3
Lecture 8: Computational Geometry AT
Voronoi Diagram Prof. Dr. Th. Ottmann & e’

Computing the Voronoi Diagram
Input: A set of points (sites)
Output: A partitioning of the plane into regions of equal
nearest neighbors

Lecture 8: Computational Geometry s ' 5
Voronoi Diagram Prof. Dr. Th. Ottmann W et

Animations of the Voronoi diagram

http://wwwpi6.fernuni-hagen.de/java/JavaAnimation

V(py)

Lecture 8: Computational Geometry s '
Voronoi Diagram Prof. Dr. Th. Ottmann &

Characteristics of Voronoi Diagrams
1) Voronoi regions (cells) are bounded by line segments.
Special case :

Collinear points e |o e |0 | o

Theorem : Let P be a set of n points (sites) in the plane.
If all the sites are collinear, then Vor(P) consists
of n-1 parallel lines and n cells. Otherwise, Vor(P)
is aconnected graph and its edges are either
line segments or half-lines.

If p;, p; are not collinear with p,, then
h(p; p) and h(p; p,) can not be parallel!

h(ppy)

Vor(P) is Connected

Claim: Vor(P) is connected
Proof by contradiction:

If Vor(P) is not connected then there would be a Voronoi

cell V(P,) splitting the plane into two halfes. Beacuse Voronoi
cells are convex, V(P) would consist of a strip bounded by
two parallel full lines, but we know that edges of Voronoi
diagram cannot be full lines, hence a contradiction.

Lecture 8: Computational Geometry e l'w 7
Voronoi Diagram Prof. Dr. Th. Ottmann < et

Lecture 8: Computational Geometry AT 8
Voronoi Diagram Prof. Dr. Th. Ottmann < et

Other Characteristics
(Assumption: No 4 points are on the circle)

(2) Each vertex (corner) of VD(P)
has degree 3

(3) The circle through the three points e

defining a Vertex of the

Voronoi diagram does not contain .
any further point

(4) Each nearest neighbor of one point defines an edge of
the Voronoi region of the point.

(5) The Voronoi region of a point is unbounded if the point lies
exactly on the convex hull of the point set.

Lecture 8: Computational Geometry AT 9 Lecture 8: Computational Geometry AT 10
Voronoi Diagram Prof. Dr. Th. Ottmann & e’ Voronoi Diagram Prof. Dr. Th. Ottmann & e’
Size and Storage Theorem

Size of the Voronoi Diagram:

V(p) can have O(n)
vertices!

The number of vertices in the Voronoi diagram of a set of n points
in the plane is at most 2n-5 and the number of edges is at most
3n-6.
Proof: 1. Connect all Half-lines with fictitious point «

2. Apply Euler's formula: v—-e+f=2

For VD(P) + o : v = number of vertices of VD(P) + 1
e = number of edges of VD(P)
f = number of sites of VD(P) =n

Each edge in VD(P) + o has exactly two vertices and each
vertex
of VD(P) + «has at least a degree of 3:

= sum of the degrees of all vertices of Vor(P) + «
=2 (#edges of VD(P))
>3- (# vertices of VD(P) + 1)

Lecture 8: Computational Geometry s ' 11
Voronoi Diagram Prof. Dr. Th. Ottmann W et

Lecture 8: Computational Geometry .': ". 12
Voronoi Diagram Prof. Dr. Th. Ottmann W et

Proof(Continued)

Number of vertices of VD(P) = v,

Number of edges of YD(P) = e,

We can apply: (v, +1)—e,+n=2
2e,23(v,+1)
2e,23(2+e,-n)

Example

=6+3e,~3n
—6>e
3n-62e,
Lecture 8: Computational Geometry 13 Lecture 8: Computational Geometry AT 14
Voronoi Diagram Prof. Dr. Th. Ottmann Voronoi Diagram Prof. Dr. Th. Ottmann < et

Storage of Voronoi-Diagrams
Three Records:
vertex {
Coordinates
Incident edge

Computing the Voronoi Diagram

Input: A set of points (sites)
Output: A partitioning of the plane into regions of equal
nearest neighbors.

h
face {
OuterComponent
InnerComponents
h
eg.: halfedge {
Origin
Vertices 1= {(1,2) [12} .
Sites 1={15|0} IncidentFace
Edges 54 ={4|45|1|43|15} Next
Prev
b
Lecture 8: Computational Geometry 15 Lecture 8: Computational Geometry A 16
Voronoi Diagram Prof. Dr. Th. Ottmann Voronoi Diagram Prof. Dr. Th. Ottmann & e’

Divide and Conquer(Divide)
Input: A set of points (sites)

Output: A partitioning of the plane into regions of equal
nearest neighbors.

Divide: Divide the point set into two halves

Lecture 8: Computational Geometry io 17
Voronoi Diagram Prof. Dr. Th. Ottmann W et

Divide and Conquer (Conquer)

Conquer: Recursively compute the Voronoi
diagrams for the smaller point sets
Abort condition: Voronoi diagram of a single point is the
entire plane.

Lecture 8: Computational Geometry io 18
Voronoi Diagram Prof. Dr. Th. Ottmann W et

Divide and Conquer (Merge)

Merge the diagrams by a (monoton) sequence of edges)

The Result

The finished Voronoi Diagram

Running time: With n given points is O(n log n)

Lecture 8: Computational Geometry At Lecture 8: Computational Geometry At 20
Voronoi Diagram Prof. Dr. Th. Ottmann e Voronoi Diagram Prof. Dr. Th. Ottmann & e’

Geometrical Divide and Conquer

Problem: Determine all intersecting pairs of segments

DAC - Construction of the Voronoi diagram

Divide:
Divide P by a vertical dividing line T into 2 equal size subsets
say P, and P,. If |P| = 1= completed.

_ D | | Conquer:
B c | | —|—L Compute VD(p,) and VD(p,) recursively.
Merge:
] Compute the edge course K separating P, and P,
A Cut VD(P,) and VD(P,) by means of K starting from
o| o oA | Veinige Vor(P,) and Vor(P,) and K
B D¥ o | ° | *D °
ce QJ E E
Theorem: K in O(n) = Running time T(n) = O(n log n)
S, S, Proof : T(n) =2 T(n/2) + O(n), T(1) = O(1)
Lecture 8: Computational Geometry A 2 Lecture 8: Computational Geometry At 2
Voronoi Diagram Prof. Dr. Th. Ottmann P Voronoi Diagram Prof. Dr. Th. Ottmann e
Computation of K Example

First edge in K

4 tangential points P, P,
P,

Observation: Ky - monotonous P,
Last edge in K

Incremental (sweep line) construction
(p;in P, and p, in P, perpendicular with m, Sweep /)

Determines intersection s, of m with Vor(p,) below /
Determines intersection s, of m with Vor(p,) below /

Extend K by line segment / s;

Set /=s;

Compute new K defining pair p;, p,
Theorem : Running time O(n)

Proof : Vor(p;) are convex, therefore each one's
forward - edge are only visited once.

Lecture 8: Computational Geometry we |'n 23
Voronoi Diagram Prof. Dr. Th. Ottmann s’

Lecture 8: Computational Geometry .': ". 24
Voronoi Diagram Prof. Dr. Th. Ottmann W et

Fortune’s Algorithm

@ S Beach - line

Sweep - line

Observations:

Intersection of the parabolas define edges

New "telephones” (&8) define new parabolas
Parabola intersection disappear, if C(P, g) has 3 points

Lecture 8: Computational Geometry
Voronoi Diagram Prof. Dr. Th. Ottmann

Use (static object set)

Closest pair of points:
Go through edge list for VD(P) and determine minimum

All next neighbors :
Go through edge list for VD(P) for all points and get
next neighbors in each case

Minimum Spanning tree (after Kruskal)
1. Each point p from P defines 1-element set of
2. More than a set of T exists
2.1) find p,p” with pin Tand p” notin T with d(p, p’)
minimum.
2.2) connect Tand p” contained in T* (union)

Theorem : All computes in O(n log n)

Lecture 8: Computational Geometry AT
Voronoi Diagram Prof. Dr. Th. Ottmann < et

26

Applications (dynamic object set)

Search for next neighbor :

Idea : Hierarchical subdivision of VD(P)

Step 1: Triangulation of final Voronoi regions

Step 2 : Summary of triangles and structure of a search tree

Rule of Kirkpatrick :
Remove in each case points with degree < 12,
its neighbor is already far.

®)

xS

Theorem : Using the rule of Kirkpatrick a search tree
of logarithmic depth develops.

Lecture 8: Computational Geometry
Voronoi Diagram Prof. Dr. Th. Ottmann

Duality and Arrangements

» Duality between lines and points

« Computing the level of points in
an arrangement

« Arrangements of line segments

« Half-plane discrepancy

Computational Geometry i

Lecture 9 :
Prof. Dr. Th. Ottmann el

Arrangements and Duality

Different duality mappings

A pointp =(a,b)and aline l: y=mx + b are
uniquely determined by two parameters.

a) Slope mapping: p*=L(p): y=ax+b
b) Polar mapping: p *:ax + by =1

c) Parabola mapping: p*: y=2ax -b

d) Duality transform:

p=(a,b)ismappedto p*:y=ax—b
I:y =mx + b is mapped to I* = (m, -b)

Computational Geometry N 2

Lecture 9 :
Prof. Dr. Th. Ottmann el

Arrangements and Duality

Duality transform
P = (PPy)

(psspr)= v = px— py
y=mx +b (m,—h)

Characteristics :

Characteristics of the duality transform
2) Incidence Preserving :
P = (P py) lies on I: y = mx+b iff I* lies on p*

p lies on I iff p, = mp, +b.

1. (p")* =p = (Popy), ()" = I lies on p*
e iff (m,-b) fulfills the equation y = p,x - p,

Py = PX =Py iff -b = pm —p,.

(") = (PwPy) = P

(=1
Lecture 9 : Computational Geometry 3 Lecture 9 : Computational Geometry A
Arrangements and Duality Prof. Dr. Th. Ottmann Arrangements and Duality Prof. Dr. Th. Ottmann Pty

Characteristics of the duality transform
Summary

3) Order Preserving : p lies above | iff I* lies above p*

I* = (m,-b)

P = (P Py

Iy =mx+b

(mp, +b)

Observations:

1. Point p on straight line | iff point | * on straight line p *

2. pabovel iff | * above p *

p lies above | I* lies above p*

p,> mp, +b -b >p,m - p,iff p, > p,m+b
Lecture 9 : Computational Geometry AN s Lecture 9 Computational Geometry A
Arrangements and Duality Prof. Dr. Th. Ottmann Fait Arrangements and Duality Prof. Dr. Th. Ottmann Fait

Computing the level of points in arrangements

Compute for each pair (p,q) of points
° and the straight line I(p,q) defined by p and q:

The number of points
- above I(p, q)
-onl(p, q)
- below I(p, q)

= running time (naive):

Lecture 9 : Computational Geometry AN 7
Arrangements and Duality Prof. Dr. Th. Ottmann

Determining the number of points below a line

I(p,a)*

ris below I(p,q) iff I(p,q)* is below r *

Lecture 9 : Computational Geometry s
Arrangements and Duality Prof. Dr. Th. Ottmann

Determining the level of points

Define for a set of straight lines for each intersection point p,
the number of those straight lines, which run above p.

Definition: Level of a point p = # straight lines above p

p
Lecture 9 : Computational Geometry 9
Arrangements and Duality Prof. Dr. Th. Ottmann

Levels of points in an arrangement

Lecture 9 : Computational Geometry 210
Arrangements and Duality Prof. Dr. Th. Ottmann

Determining the levels of all Intersections
For each straight line:
1) Compute the level the leftmost intersection with other lines in time

O(n) (comparison with all other straight lines).
2) Walk along the line and update the level at each intersection point

Run time : O(n?)

Lecture 9 : Computational Geometry AN 1
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Arrangement of a set of n straight lines in the
plane

Lecture 9 Computational Geometry AN 12
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Size of an Arrangement
Theorem :

Let L be a set of n lines in the plane, and let A(L) be the arrangement
induced by L.

1) The number of vertices of A(L) is at most n(n-1)/2.
2) The number of edges of A(L) is at most n?.
3) The number of faces of A(L) is at most n%/2 + n/2 + 1.

Equality holds in these three statements iff A(L) is simple.

Proof : Assume that A(L) is simple.
1) Any pair of lines gives rise to exactly one vertex
= n(n-1)/2 vertices.
2) # of edges lying on a fixed line = 1 + # of intersections on
that line with all other lines, which adds up to n.
So total number of edges of A(L) = n2

Lecture 9 : Computational Geometry 13
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Proof(Contd...)

Bounding the # of faces

Euler's Formula : For any connected planar embedded graph
with m, veritces, m, edges, m; faces the relation
m, —m, + m;= 2 holds.

We add a vertex v, to A(L) to get a connected planar embedded
graph with v vertices, e arcs and f faces.

Sowehavef=2—-(v+1)+e
=2—(n(n-1)/2+1)+n?
=n%2+n/2+1.

Lecture 9 : Computational Geometry AN 14
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Lecture 9 : Computational Geometry
Arrangements and Duality Prof. Dr. Th. Ottmann

Storage of an Arrangement

Bounding-box R contains all vertices of A(L).

AL)

Store A(L) as doubly connected edge list.

Lecture 9 : Computational Geometry 2 16
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Computation of the Arrangement

Modify plane-sweep algorithm for segment intersection:
®(n? log n), there are max. n? intersections.

Incremental algorithm, running in time O(n?)

1) Compute Bounding box B(L) that contains all vertices

of A(L) in its interior.

Construct the doubly connected edge list for the sub-

division induced by L on B(L).

fori=1ton

1) do find the edge e on B(L) that contains the leftmost
intersection point of |; and A;.

2) f=the bounded face incident to e.

3) while fis not the unbounded face

) do split f, and set f to be the next intersected face.

2

3

4

Lecture 9 : Computational Geometry AN 17
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Finding the next intersected face

Idea: Traverse along the edges of faces intersected by g

f 9
R
Lecture 9 Computational Geometry AN 18
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Splitting a Face

* a new face
* a new vertex
« two new half-edges

Time : O(1)

Lecture 9 :
Arrangements and Duality

Computational Geometry Et)
Prof. Dr. Th. Ottmann ey

Zone Theorem

Complexity of the zone of a line : Sum of number of edges and
vertices of all intersected faces.

Zone Theorem : The complexity of the zone of a line in an
arrangement of m lines in the plane is O(m).

Proof: By induction on m. (Omitted)

Lecture 9 :

Computational Geometry .
Prof. Dr. Th. Ottmann ey

Arrangements and Duality

20

Supersampling

Supersampling in Ray Tracing

o

In order to handle arbitrary lines: Choose a random set of points
(Supersampling):

Shoot many rays through a box, take the average

Lecture 9 :

Computational Geometry AN 2
Arrangements and Duality Prof. Dr. Th. Ottmann Tir

Computing the Discrepancy

Unit square U
[0,1] x [0,1]

H = set of all halfplanes
ane h Continuous measure

of half-plane h € H is p(h)

S is set of n sample points in U.

Discrete measure of h is pg(h)
ps(h) := card (S n h) / card(S).

The half-plane discrepancy of a set S of n points is the supremum
of all differences between the discrete and continuous measures
for all halfplanes.

Lecture 9 :

Computational Geometry AN 2
Arrangements and Duality Prof. Dr. Th. Ottmann Tir

Example
Definition of half-plane discrepancy
s ° U
The discrepancy of h with respect to S, denoted as A, (h),
is absolute difference between the continuous and
discrete measure. A (h) := | p(h) - pg(h) |. b /
hd .
Halfplane discrepancy : AH(S) =Ssup As(h) b °
heH °
[]
° °

Lecture 9 :

Computational Geometry
Arrangements and Duality

Prof. Dr. Th. Ottmann

Lecture 9
Arrangements and Duality

Computational Geometry /
Prof. Dr. Th. Ottmann ey

Computing the Discrepancy(contd...)

Example

Lemma : Let S be a set of n points in the unit square U.
A half-plane h that achieves the maximum discrepancy with Y °
respect to S is of one of the following types :
1. h contains one point p € S on its boundary. ° °
2. h contains 2 or more points of S on its boundary. .
The number of type(1) candidates is O(n), and they can be)
found in O(n) time. hd
[]
° [
Lecture 9 : Computational Geometry A o5 Lecture 9 : Computational Geometry AN 26
Arrangements and Duality Prof. Dr. Th. Ottmann Fait Arrangements and Duality Prof. Dr. Th. Ottmann it

First case : One point

Px v

(P Py

1

A(a) = 1/2 (1 - p,* pstan a) (p,+ (1-p,)/ tan a)

Area function has only finitely many extreme values!

Lecture 9 : Computational Geometry
Arrangements and Duality Prof. Dr. Th. Ottmann

Discussion of the area function

A(@)=1/2(1- py* py tan a) (p,+ (1- py) /tan a)

with tan’ = 1/cos?, (1/x)’ = -1/x, chain rule

= A'(a) = 1/2 (p,2/ cos® a + (1 - p,)’/cos® a tan® a)

A(@=0=p?-(1-py)tan*a
=tan*a=(1-p,)/p,’

Lecture 9 : Computational Geometry A g
Arrangements and Duality Prof. Dr. Th. Ottmann sl

Overview

* Motivation.
« Triangulation of Planar Point Sets.
« Definition and Characterisitics of the Delaunay Triangulation.
» Computing the Delaunay Triangulation
(randomized, incremental).

« Analysis of Space and Time Requirement.

Motivation

Transformation of a topographic map

Lecture 10 : Computational Geometry AN Lecture 10 : Computational Geometry AN 2
Delaunay Triangulation Prof. Dr. Th. Ottmann o wd Delaunay Triangulation Prof. Dr. Th. Ottmann o wd
Terrains Triangulation of Planar Point Sets

Given: A number of sample points p;..., p,
Required: A triangulation T of the points resulting in a “realistic” terrain.

"Flipping" of an edge:

900 900
0
% @5 % @
930 930

Goal: Maximise the minimum angle in the triangulation

Lecture 10 : Computational Geometry
Delaunay Triangulation Prof. Dr. Th. Ottmann

Given: Set P of n points in the plane (not all collinear).

A triangulation T(P) of P is a planar subdivision of the
convex hull of P into triangles with vertices from P.

T(P) is a maximal planar subdivision.

For a given point set there are only finitely many different
triangulations.

Lecture 10 : Computational Geometry
Delaunay Triangulation Prof. Dr. Th. Ottmann

Size of Triangulations

Theorem : Let P be a set of n points in the plane, not all collinear
and let k denote the number of points in P that lie on the boundary
of convex of hull of P. Then any trianglation of P has 2n-2-k
triangles and 3n-3-k edges.

Proof :

Let T be triangulation of P, and let m denote the # of triangles of T.

Each triangle has 3 edges, and the unbounded face has k edges.

= n; = # of faces of triangulation =m + 1

every edge is incident to exactly 2 faces.

Hence, # of edges n, = (3m +k)/2.

Euler's formula: n-n, +n;= 2.

Substituting values of n, and n;, we obtain:
m=2n-2-kandn,=3n-3-k.

Lecture 10 : Computational Geometry M. s
Delaunay Triangulation Prof. Dr. Th. Ottmann Fatl

Angle Vector

Let T(P) be a triangulation of P ('set of n points).

Suppose T(P) has m triangles.

Consider the 3m angles of triangles of T(P), sorted by increasing value.
A(T) ={a,..., as,} is called angle-vector of T.

Triangulations can be sorted in lexicographical order according to A(T).

A triangulation T(P) is called angle-optimal if A(T(P)) >A(T'(P))
for all triangulations T* of P.

Lecture 10 : Computational Geometry M. 6
Delaunay Triangulation Prof. Dr. Th. Ottmann Fatl

lllegal Edge

The edge p;p; is illegal i min o; < min o

1<i<6 1<i<6

Note: Let T be a triangulation with an illegal edge e.
Let T* be the triangulation obtained from T by flipping e.
Then, A(T") >A(T) .

Lecture 10 :
Delaunay Triangulation

Computational Geometry
Prof. Dr. Th. Ottmann

Legal Triangulation

Definition : A triangulation T(P) is called a legal triangulation,
if T(P) does not contain any illegal edges.

Test for illegality

Lemma :

Let edge p;p; be incident to triangles p,p;p
and ppyp;, and let C be the circle thru p,p;
and p, . The edge pyp; is illegal iff the point p,
lies in the interior of C. Furthermore, if the
points p;, p; Py, p; form a convex quadri-

lateral and do not lie on a common Py
circle , then exactly one of pp; or \
P

PP, is an illegal edge.

Lecture 10 :
Delaunay Triangulation

Computational Geometry
Prof. Dr. Th. Ottmann

P

Test of lllegality
Observation:

p, lies inside the circle through p;, p; and p, iff p, lies inside the
circle through p;, p;, p, . When all four points lie on circle, both
pp; and p,p, are legal.

Lecture 10 :
Delaunay Triangulation

Computational Geometry
Prof. Dr. Th. Ottmann

Thales Theorem

Z asb
< Zagb=Zapb

Lemma: Let C be the circle through the
triangle p;, p;, p and let the point p, be
the fourth point of a quadrilateral.

The edge pp; is illegal iff p, lies in the
interior of C.

Lecture 10 :
Delaunay Triangulation

Computational Geometry
Prof. Dr. Th. Ottmann

P p; Consider the quadrilateral with p, in the interior of
the circle that goes through p;, p;, py.

Claim: The minimum angle does not occur at p,!

(likewise: Minimum angle does not occur at p;)

P
Pi p;
Goal: Show that pp; is illegal
Px
Lecture 10 : Computational Geometry AN
Delaunay Triangulation Prof. Dr. Th. Ottmann Fait

W.lo.g.

a, minimal

Computational Geometry s
Prof. Dr. Th. Ottmann

Lecture 10 :
Delaunay Triangulation

Assumption:
edge p,p, is illegal,

b and circle criterion is not violated
i

Py

P
P
Then: Edge pp; is also illegal,
: T : . . Py
Circle criterion violated = illegal edge a contradiction!

Lecture 10 : Computational Geometry 13 Lecture 10 : Computational Geometry 14
Delaunay Triangulation Prof. Dr. Th. Ottmann Delaunay Triangulation Prof. Dr. Th. Ottmann
Circle Criterion Theorems

Definition:

A triangulation fulfills the circle criterion if and only if the
circumcircle of each triangle of the triangulation does not contain
any other point in its interior.

Lecture 10 : Computational Geometry
Delaunay Triangulation Prof. Dr. Th. Ottmann

Theorem:
A triangulation T(P) of a set P of points does not contain an
illegal edge if and only if nowhere the circle criterion is violated.

Theorem:

Every triangulation T(P) of a set P of points can be finally
transformed into an angle-optimal triangulation in a finite
number of steps.

Lecture 10 : Computational Geometry
Delaunay Triangulation Prof. Dr. Th. Ottmann

Definition and characteristics of
the Delaunay triangulation

The Delaunay Triangulation DT(G) is the straight line dual of the
Voronoi diagram.

Vertices: Points (sites) of the Voronoi regions

Edges: Between any two points of neighbouring Voronoi regions

Each Voronoi vertex is the center of a triangle of the Delaunay
triangulation (for sets of points (sites) in general position).

Lecture 10 : Computational Geometry AN 17
Delaunay Triangulation Prof. Dr. Th. Ottmann

Planarity of the Delaunay Graph DG(P)

Theorem:
The Delaunay Triangulation DT(P) of a set of points P is planar.

Proof:
Let pjp; be an edge of DT(P). Then there is an empty circle C;,
that goes through p; and p;.

T;, the center of C;, is on the

common edge of V(p)) and V(p).

Lecture 10 : Computational Geometry A8
Delaunay Triangulation Prof. Dr. Th. Ottmann

t contains no sites

Lecture 10 : Computational Geometry 2N 19

Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Lecture 10 : Computational Geometry 2 20
Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Delaunay Triangulation

A set of points P is in general position if it contains no 4 points on
a circle

For point sets in general position all vertices of the Voronoi
diagram have degree 3 and all bounded faces of DT(P) are
triangles

In any case: All faces of DT(P) are convex

L]
DT{(P) = Triangulation of DG(P)
Lecture 10 : Computational Geometry 21
Delaunay Triangulation Prof. Dr. Th. Ottmann

Characterisation of the Delaunay Triangulation

Theorem:

Let P be a set of points in the plane (in general position), and let
T be a triangulation of P. Then T is a Delaunay Triangulation of P
if and only if the circumcircle of any triangle of T does not
contain any other point of P in its interior (i.e. T fulfills the circle
criterion).

Lecture 10 : Computational Geometry AN
Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Equivalent characterisations of the Delaunay
Triangulation

1. DT(P) is the straight-line-dual of VD(P).

2. DT(P) is a triangulation of P such that all edges are legal
(local angle-optimal).

3. DT(P) is a triangulation of P such that for each triangle the
circle criterion is fulfilled.

4. DT(P) is global angle-optimal triangulation.

5. DT(P) is a triangulation of P such that for each edge pp;
there is a circle, on which p; and p; lie and which does not
contain any other point from P.

Lecture 10 : Computational Geometry AN
Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Computation of the Delaunay Triangulation
(randomized, incremental)

. . z(0,3m)

Given: Pointset P ={p,..., p,}

Initially:

Compute triangle (x, y, 2),

which includes the points

Py Ppe y (3m,0)

X (-3m,-3m)

Lecture 10 : Computational Geometry AT 2
Delaunay Triangulation Prof. Dr. Th. Ottmann Fair,

Algorithm DT(P)

m = max {|x],|y|}

T=((3m, 0), (3m, 3m), (0, 3m))

1. initialize DT(P) as T.

2. permutate the points in P randomly.

3. forr=1tondo
find the triangle in DT(P), which contains p,;
insert new edges in DT(P) to p,;
legalize new edges.

4. remove all edges, which are connected with x, y or z.

Inserting a point

2 cases: p,is inside a triangle

p,is on an edge o

b p, ‘ J

Legalize (p,pp; T)
if pp; is illegal

pl
then Let p;p,p, be the triangle adjacent '

pi

to p,pip; along pp;.

Legalize (0, ppy T) / g
Legalize (b, po; T) ~ P

Lecture 10 : Computational Geometry AN 25 Lecture 10 : Computational Geometry AN 26
Delaunay Triangulation Prof. Dr. Th. Ottmann Pty Delaunay Triangulation Prof. Dr. Th. Ottmann Pty
Algorithm Delaunay Triangulation Correctness

Input: A set of points P = {p,..., p, } in general position

Output: The Delaunay triangulation DT(P) of P

1. DT(P)=T=(x,y, 2)

2. forr=1tondo

3. find a triangle pjpjp, & T, that contains p,.

4 if p, lies in the interior of the triangle p,p,0,

5. then split PiPPx__ _

6 Legalize(p, pp), Legalize(p, PP,
Legalize(p, ppy, _

7. if p, lies on an edge of pp,p, (say pp;)

8. then split pp,p,.and p/ _
Legaiize. (b, by, LdGhize (o, Py,
Legalize (p, pp). Legalize (b, ppy)

9. Delete (x, y, z) with all incident edges to P

Lecture 10 : Computational Geometry
Delaunay Triangulation Prof. Dr. Th. Ottmann

Lemma :Every new edge created in the algorithm for constructing
DT during the intersection of p, is an edge of the Delaunay graph of
Ruipy...pt -

pq is a Delaunay edge iff there is a (empty) circle, which

contains only p and g on the circumference.

Proof idea : Shrink a circle which was empty before addition of p, !

Lecture 10 : Computational Geometry A g
Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Correctness of the algorithm: Consider newly produced edges:

Observation: After insertion of p, , every new edge produced
by edge-flips is incident to p/!

Lecture 10 : Computational Geometry A% 2
Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Edge-flips produce only legal edges.

Before inserting p, , circle that goes through p; p; p, was empty!

Edge-flips produce edges that are always incident to p, !

Lecture 10 : Computational Geometry A 30
Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Data Structure for Point Location

U split t,

U fiip pp;

U flip po,

Lecture 10 : Computational Geometry A3
Delaunay Triangulation Prof. Dr. Th. Ottmann

Analysis of the Algorithm for Constructing
DT(P).

Lemma :

The expected number of triangles created by the incremental
algorithm for constructing DT(P) is atmost 9n + 1.

Lecture 10 : Computational Geometry AN

Delaunay Triangulation Prof. Dr. Th. Ottmann sl

Analysis of the Running time

Theorem :

The Delaunay triangulation of a set of P of n points in the
plane can be computed in O(n log n) expected time, using
O(n) expected storage.

Proof :

Running time without Point Location :
Proportional to the number of created triangles = O(n).

Point Location :
The time to locate the point p, in the current triangulation
is linear in the number of nodes of D that we visit.

Lecture 10 : Computational Geometry
Delaunay Triangulation Prof. Dr. Th. Ottmann

Geometric Data Structures

. Rectangle Intersection
. Segment trees

. Interval trees

AW N =

. Priority search trees

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Rectangle Intersection

- Sweep a horizontal Scan-Line from top to bottom.
- Store the intersection points with the rectangles in a status
structure L.

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Operations on L

- Insertion of an interval into L
- deletion of an interval from L

- For a given interval |:
Determine all intervals from L, which overlap
themselves with |

L stores a set of intervals over a discrete and well-known
universe of possible end-points.

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Reduction of the overlap-query

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Segment Trees
Segment trees are a structure for storing sets of intervals,
which support the following operations:
- insertion of intervals
- deletion of intervals

- stabbing queries:
For a given point A, report all intervals
which contain A (which are stabbed by A)

For the solution of the rectangle intersection problem
semi-dynamic segment trees are sufficient.

Lecture 11: Computational Geometry AN

More Geometric Data Structures Prof. Dr. Th. Ottmann sl

Example

An interval /is in the list of a vertex p if and only if p is the first
node from the root, so that the interval of /(p) is contained in /.

Insertion of an interval is possible in O(log n) steps.

Lecture 11 : Computational Geometry AN

More Geometric Data Structures Prof. Dr. Th. Ottmann sl

Size of a Segment Tree

1
Each interval of / appears in at the most O(log n) interval
lists.

Construction of a segment tree with n intervals is possible in
time O(n log n).

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Algorithm for answering stabbing queries
A

B c D
E 3

VAR VEARVARVE

procedure report (p: node ; x: point):
report all intervals of the list of p;
if p is leaf then finish else
{if (p has left child p, & x in I(p)))
then report(p,, x);
if (p has right child p, & x in I(p,))
then report(p,, x); }
Using the segment tree all intervals that contain a query point
can be reported in time O(log n + k), where k is the number of
reported intervals.

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Deletion of Intervals

Dictionary for all intervals

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Interval Trees

Skeleton (complete search tree of the interval boundaries)
o-Lists sorted according to descending upper end points
u-Lists sorted according to ascending lower end points

Interval [I,r] is stored in the u-/ o-list of the node s

forwards if and only if s of the knots of minimum
depth is, so that s liesin[I,r].

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Example

0,2}, 11,5, 13,41 [5, 71, 16,71, [1,71}

[1.5], [1,7], [3,4]

.71

Insertion and deletion of intervals in an interval tree with

skeleton of size O(n) and altogether O(n) intervals can be
carried out in time O(log n).

[1.5] [3.4]
5.7, [6,7]

Lecture 11: Computational Geometry AN
More Geometric Data Structures Prof. Dr. Th. Ottmann sl

u - lists I o - lists

x X
X < p.key X > p.key
Procedure report (p :nodes, x : points)
if x = p.key then report all intervals of the u/o — lists
else if x < p.key then { report beginning of the u-list;
report(p;, x) }
{ report beginning of the o - list;
report(p,, X) }
Stabbing queries can be answered in O(log n + k) time,
where k is the number of reported intervals.

Lecture 11 : Computational Geometry AN 2
More Geometric Data Structures Prof. Dr. Th. Ottmann sl

else (x > p.key)

Priority Search Trees

Priority Search Trees

Priority Search trees are a 1.5-dim structure for the storage
of points, they support the following operations :

B
c . .
Insertion of a point
—A— D - Deletion of a point
b South-grounded range queries
L]
[}
oA o L
! ! ! ! ! | | .
T T T T T T T T M L4 °
L4 . °
o o o
| r .
L] L]
Lecture 11 : Computational Geometry 13 Lecture 11 : Computational Geometry 14
More Geometric Data Structures Prof. Dr. Th. Ottmann More Geometric Data Structures Prof. Dr. Th. Ottmann
Insertion

Priority Search Trees
Priority search trees are

- binary leaf search trees for the x-coordinates of the points.
- min heaps for the y-coordinates of the points.

M={(1,3).(2,4).(3,7),(4,2),(51),(6,6),(7,5), (8 4}

o 868

Insertion of a pointp = (x, y) :

Deposite p on the search path for x according to its y-value!

l.e. if on the way down the tree, p meets a point g, with larger y-value,
then deposit p there and and continue the procedure with g.

Insertion of a point can be carried out in time O(log n).

Lecture 11 : Computational Geometry 15 Lecture 11 : Computational Geometry 16
More Geometric Data Structures Prof. Dr. Th. Ottmann More Geometric Data Structures Prof. Dr. Th. Ottmann

Look for point p in the tree and remove it;

Close the gaps (recursively) by pulling up the point,
with smaller y-value.

Deletion of a point is possible in time O(log n).

Lecture 11: Computational Geometry EiRY
More Geometric Data Structures Prof. Dr. Th. Ottmann sl

South-grounded range queries (x, X', y):

Search for x and x".
Report all points with y-value < y
within the range between these borders.

y

T~
X X

Executable in O(log n + k) time.

Lecture 11 : Computational Geometry AN 18
More Geometric Data Structures Prof. Dr. Th. Ottmann sl

Possibilities for the full dynamization of priority search trees:
No rigid skeleton, but growing or shrinking with the point set.

3 Inserting (5,3)

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

Balanced trees as skeletons

© AA)
AN £\ A\

Rotation conserves the x-order and
destroys in general the y-order.

Lecture 11 : Computational Geometry
More Geometric Data Structures Prof. Dr. Th. Ottmann

20

Special Cases of the Hidden Line
Elimination Problem
HLE- Problem :

Produce a realistic image of a given 3- d scene under orthographic
projection by eliminating hidden lines.

3-dScene:

Set of bounding polygonal faces ; each face given

Visibility problems

Hidden-line-elimination

by its plane equation and the sequence of its
edges ; each edge given by its endpoints. /! Visible surface computation
Special Cases :
Set of
1) rectilinear faces
2) C- oriented faces
Lecture 12 : Computational Geometry AN Lecture 12 : Computational Geometry .o
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann o wd Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann o wd
Problem Sets Problem Sets
Problem A : Problem B :
Set of aligned rectangular faces in 3 - space; . .
9 g o i Set of C- oriented polygonal faces in 3 - space;
each face parallel to the projection plane. all parallel to the projection plane.
Only C different edge directions
Lecture 12 : Computational Geometry 3 Lecture 12 : Computational Geometry .o
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann o wd
Problem Sets Plane sweep solution of Problem A
Problem C :

Set of C- oriented solids in 3 — space.

Projection of the faces
onto the projection plane
yields a set of C*-
oriented polygons where

C'= (g] =0(c?)

Solution methods:
- plane- sweep
- dynamic contour maintenance

Lecture 12 : Computational Geometry AN s
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Y view
X
z sweep
[T — - X view
1
— 1 1
! 1
! 1
| - _1 1Y
| sweep
Lecture 12 :

Computational Geometry A
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann /

Plane sweep solution of Problem A(contd...)

l view

~

When sweeping the X- Z- plane in Y- direction:

horizantal line segments
- appear
- stay for a while
- disappear

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

lview
[—
1 1
1 | e—
! 1 ! 1
1 o 1
1 b 1 X
|p:l|l ! 1
f PR B e '
L1y z
i L [}
Coverage no 1 110'11 2 4 11

for each rectangle edge / with left endpointp do X
1. Compute the coverage number ¢ of p w.r.t. the currently active faces in front of p;
2. Scan along / updating c; report all pieces with ¢ = 0 as visible

L = Set of currently active line segments

for each end of a line segment /" in L passed when scanning
along / do
if I”is above / then update c;
output visible piece, if c becomes 0
else ignore this end

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Subproblems

Subproblem 1:

Given a set L of horizontal line segments and a query point p,
determine the number of segments in L that are above p.

Subproblem 2:

Ly = set of X- values of endpoints of segments in L

For a given X- interval iy retrieve the coordinates in Ly enclosed
by iy in X- order.

L and Ly must allow insertions and deletions

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Solution of Subproblem 2

Dynamic (or semi-dynamic) range tree

ro = # vertical edges
that intersect /

O(logn + r,)
=
= = I
Xi
@) Above- I- test:
ix By associated Z- values
in O(1) time

Lecture 12 : Computational Geometry 10
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Segment - range tree

Subproblem 1: Determine the number of segments above a query point

2. Organize the node lists as range trees

l 1. Store the X- intervals in a segment tree
according to their Z- values

l Query interval

c
Retrieval of the t segmentsin L
b b with Z- values in ltakes time
d 1 a O(log?n +t)
hd We need only the number of those

o segments
I E . =» Segment - Rank tree
(Olog®n)
x

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann J

Time Complexity

For each rectangle edge e :

O(logzn) for solving subproblem 1
O(logzn +k,) for solving subproblem 2

O(log?n) for inserting/ deleting a horizontal line
segment in a segment range tree

O(logn) for inserting/ deleting two coordinates
in a range tree

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Space complexity

O(n log n) for storing a segment range tree of n elements

Theorem:

For a set of n rectangular faces, Problem A can be solved
in O(nlog?n + k) time and O(n log n) space, where k
is the number of edge intersections in the projection plane

Compare with O((n+k) log n) time!

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Problem B

Problem B: C- oriented polygonal faces
all parellel to the projection plane

X view
o

mpaSy

sweep X

Main idea: Use C different data structures, one for each
edge orientation (speed)

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Store moving horizontal objects in a data structure that moves
at the same speed as the objects stored in it

Represent horizontal segments by two half-lines

moving moving
5 s
¢ +1 fixed
S - ® !
0 1 moving (1.1)=0

i { (k)

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Subproblem 1: (Determining the number of
segments above query point p)

For each speed S of the C possible speeds:
Store the segments with endpoints moving at
speed S in a segment rank tree (associated to S')

To obtain the number of segments above p:
query all C segment range trees and add the results

C segment rank trees

Problem B can be solved with the same asymptotic time and
space bounds as Problem A

(O(nlogzn +k) time, O(nlogn) space)

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

C — Oriented Solids in 3 - Space

Problem C: (C- oriented solids in 3- space)

Preprocessing step (requires O(n) time)
1. Compute the set of faces

2. Remove all back faces

C orientations of faces » C” = (f] edge orientations

Lecture 12 : Computational Geometry EiRY
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Problem C (contd...)

For each edge-orientation ¢ perform a plane-sweep

by choosing a sweep plane which is parellel to & and the
direction of view.

I view
X sweep
N
Lecture 12 : Computational Geometry A1

Al 18
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann A

Moving Segments in the Sweep Plane

Moving segments in the sweep plane

/ \ jview
VA

Intersection of the sweep plane with any face is still a line
segment having one of C different orientations,

each of its endpoints moves at one of C'=[(;] different
(speed, direction) pairs

Moving Segments in the Sweep
Plane(contd...)
Apply the same solution technique

Represent slanted segments by
pairs of slanted half-lines

Lecture 12 : Computational Geometry 2N 19
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

©
fixed
-1
. movin,
moving oving
Lecture 12 : Computational Geometry AN 20
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann sl

Solution of Problem C

Same technique as for Problem B is applicable.
Solution of Problem C: (C- oriented solids)

time O(nlog®n +k)

space O(nlogn)
time and space increase with O(c?)
»» feasible only for small values of C
Best known algorithm for the general problem

A. Schmitt: time O(n logn+klogn)
space O(n+k)

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Output sensitive HLE

n = size of input
k = # edge intersections in projected scene
q = # visible edges

large block hiding a complicated scene

wk=0(n?),q=0 (1)

Problem:

Does there exist any algorithm for the HLE- problem
whose complexity does not depend on k but only on n
and g, i.e. on the number of visible line segments ?

Lecture 12 : Computational Geometry AN
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Problem A yes
(rect. faces, parellel to proj. plane)

Problem B yes
(C- oriented faces, parellel to proj. plane)

Problem C ?
(C- oriented solids)

Solution technique:

Dynamic contour maintenance
when scanning the objects from front to back

Lecture 12 : Computational Geometry AN
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann sl

Special Case of HSR / HLE :
Window Rendering

Isothetic rectangles in
front — to — back order.

X
y
Visible portion
X
Lecture 12: Computational Geometry AT 2
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann Fa,

Dynamic Contour Maintenance

Dynamic contour maintenance

Construct the visible scene by inserting objects
from the front to the back into an intially empty
scene.

At each stage maintain the contour of the area
covered by objects so far. When encountering a
new object check it against the current contour to
determine its visible pieces and update the

Front to Back Strategy

1. Sort the rectangles by increasing depth and treat them in this order

2. Maintain the visible contour of the rectangles treated so far

|

U

q
.

contour.
Compute
1) all intersections of r and ¢
2) all edges of r completely inside / outside C
3) all edges of C completely inside r
Lecture 122 Computational Geometry 25 Lecture 12 : Computational Geometry 2%
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann
Updating the contour Algorithm
Algorithm ~ CONTOUR — HLE
Input A set of n rectangular aligned faces R,
all parellel to the projection plane
.) Output The set of visible pieces of edges defined by R
Case A: Updating the contour Method Sort R by z- coordinates (distance to the observer)

—

maintain:

[I—

F set of rectangles whose union is
the area within the contour

E set of contour edges

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

E := ¢ { set of contour edges }
F := ¢ { set of rectangles whose union is bounded by E }

Scan R (according to ascending z-values)

for each rectangle r e R do
1. Compute all intersections between edges in r and
edges in E
{1a} for each intersected edge e € E do
delete e from E;
compute the parts e outside r insert them into E

od

Lecture 12 : Computational Geometry
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

28

Algorithm (contd...)

for each edge e of r intersecting same edge in E do
{1b} compute the pieces of e” outside the contour;
report those pieces as visible;
insert those pieces into E;
od
2. for each edge e’ of r not intersecting anything do
check e’ using F whether it is completely inside the
contour (hidden);
if e”is not inside
then report e” as visible;
insert e” into E fi
od
3. Find all edges in E that are completely inside r and
delete them from E;

4. Insert rinto F
end CONTOUR - HLE

Lecture 12 : Computational Geometry A% 2
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann sl

Updating the contour

(b)

Lecture 12 : Computational Geometry A 30
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann sl

Subproblems

__L_ Find intersections between edges in E and r

Segment — Range tree

Py Given a set of rectangles F and a query point
p: check whether p is in UF.

Segment — Segment tree

Sub Problems

_—L— Compute intersection between edges in
rand C. segment — range tree for

horizontal , vertical edges of C.

"f o Point — Location in the planar subdivision
|
[]

U C.

segment — segment tree .

L
. . Range query for determining all points
° Given a set P of (left end-) points (of edges (representing edges of C) completely
° ° ° in E) and a query rectangle r: hd ° ® inside r. range — range tree.
° find all points of P inside r. ° o
ol ® ol ® Structures must be dynamic , i.e. Support
° o ° ® insert / delete operations efficiently.
Range — Range tree
Lecture 122 Computational Geometry 31 Lecture 12 : Computational Geometry 32
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann
Subproblems contd... Segment — Range Tree
Representation of set E of contour edges:
segment — range tree for horizontal edges b
segment — range tree for vertical edges
range — range tree for left / bottom end points
a
Representation of set of rectangles : d i ? ?
segment — segment tree =
Update and query take time O(log? n) (+t) L
a — — b
d i —— e
Reporting all k intersections in time O(log 2 n + k)
Lecture 122 Computational Geometry 33 Lecture 12 : Computational Geometry 34
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann

Theorem

For each rectangular face r a constant number of operations at a
cost O(log? n) per operation is performed. Additional cost arises
for each contour edge found as intersecting in step 1 or enclosed
in step 3.

Theorem :

For a set of n rectangles, problem A can be solved by dynamic
contour maintenance in O((n + q) log? n) time and O((n + q) log n)
space where q is the number of visible line segments.

The solution carries over to problem B but not to problem C;
because no scanning ("'separation”’) order is defined for
problem C.

Lecture 12 : Computational Geometry AN 35
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann sl

Theorem(Ottmann / Guting)

Theorem (Ottmann / Gliting 1987) :
The window rendering problem for n isothetic rectangles can be
solved in time O((n + k) log® n), where k is the size of the output.
Improvements
Bern 1988
O(n log n log log n + k log n)
Preparata / Vitto / Yvinec 1988
O(n log®n + k log n)
Goodrich / Atallah / Overmars 1989
O(nlogn + klogn) or
O(n'™a +Kk)
Bern 1990
O((n + k) log n)

Can be extended to C — oriented polygons (in depth order)
Problems : 1) arbitrary polygons (in depth order)
2) no depth order

Lecture 12 : Computational Geometry AN 36
Special Case of Hidden-Line-Elimination Prof. Dr. Th. Ottmann sl

