
Introduction

David Basin

Institut für Informatik
Albert-Ludwigs-Universität Freiburg

Spring 2002

Software Engineering



David Basin 1

Freiburg

T
O
O
L
S

F
O
U
N
D
A
T
I
O
N
S

A
P
P
L
I
C
A
T
I
O
N
S

Software Engineering

• Our focus: formal methods

Techniques and tools based on mathematics and logic that support the
description, construction and analysis of hardware and software systems.

• Classes in SS02

– Automata Based System Analysis
– Seminar on Tool and Methods for Automatic Program Generation
– Oberseminar Softwaretechnik

• For other classes see www.informatik.uni-freiburg.de/~softech

• See also our project page Hiwi-positions open!

Software Engineering Spring 2002



David Basin 2

General administration

• Web site
www.informatik.uni-freiburg.de/~softech/teaching/ss02/st

• Class: Tuesday 9-11, Thursday 9-10 (ct)

Exercises: Thursday 10-11. Lead by Luca Viganò and Burkhart Wolff

• Language: English (ACS)

• Grade based on exercises, project, and final exam.

Software engineering is not a spectator sport!

• Prerequisites

– Experience programming in the small with Java

– A semester logic is desirable although not mandatory

– General computer science (theory, data bases, and algorithms).
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Literature

• Sommerville: Software Engineering

• Pagel/Six: Software Engineering

• Ghezzi/Jazzayeri/Mandrioli: Fundamentals of Software Engineering

• Ian Hayes: Specification Case Studies

• See webpages for resources

– Slides available after class!

– As time permits, we may write supplemental notes.
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Today — an overview

1. Why bother with software engineering?

2. What is software engineering?

3. Structuring and abstraction in modeling
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Why bother with software engineering?

There are too many system failures! Some humorous. . .

Restaurant orders on-line, computer crash overcooks steaks.1
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Why bother with software engineering?

There are too many system failures! Some humorous. . .

Restaurant orders on-line, computer crash overcooks steaks.1

A Budd Company assembly robot has apparently commited suicide. The robot was

programmed to apply a complex bead of fluid adhesive, but the robot ignored the glue,

picked up a fistful of highly-active solvent, and shot itself in its electronics-packed chest.2
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Why bother with software engineering?

There are too many system failures! Some humorous. . .

Restaurant orders on-line, computer crash overcooks steaks.1

A Budd Company assembly robot has apparently commited suicide. The robot was

programmed to apply a complex bead of fluid adhesive, but the robot ignored the glue,

picked up a fistful of highly-active solvent, and shot itself in its electronics-packed chest.2

One of the first things the Air Force test pilots tried on an early F-16 was to tell the

computer to raise the landing while still standing on the runway. Guess what happened?

Scratch one F-16.3

1ACM SIGSOFT, Software Engineering Notes 12(2), 1987
2ACM SIGSOFT, Software Engineering Notes 13(3), 1988
3ACM SIGSOFT, Software Engineering Notes 11(5), 1986
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Why bother with software engineering? (cont.)

Others are frustrating and expensive

A Norwegian Bank was embarrassed yesterday after a cashpoint computer applied its own

form of ‘fuzzy logic’ and handed out thousands of pounds no one had asked for. A long

queue formed at the Oslow cashpoint after news spread that customers were receiving 10

times what they requested.4
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Why bother with software engineering? (cont.)

Others are frustrating and expensive

A Norwegian Bank was embarrassed yesterday after a cashpoint computer applied its own

form of ‘fuzzy logic’ and handed out thousands of pounds no one had asked for. A long

queue formed at the Oslow cashpoint after news spread that customers were receiving 10

times what they requested.4

In early 1997, after many years, $4 billion spent, extensive criticism from the General

Accounting Office [...] the IRS abandoned its tax systems modernization effort. The FBI

abandoned development of a $500-million new fingerprint-on-demand computer system.

The State of California spent $1 billion on a nonfunctional welfare database system. The

Assembly Information Technology Committee was considering scrapping California’s

Automated Child Support System, which had already overrun its $100 million budget by

more than 200%.5
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Why bother with software engineering? (cont.)

Others are frustrating and expensive

A Norwegian Bank was embarrassed yesterday after a cashpoint computer applied its own

form of ‘fuzzy logic’ and handed out thousands of pounds no one had asked for. A long

queue formed at the Oslow cashpoint after news spread that customers were receiving 10

times what they requested.4

In early 1997, after many years, $4 billion spent, extensive criticism from the General

Accounting Office [...] the IRS abandoned its tax systems modernization effort. The FBI

abandoned development of a $500-million new fingerprint-on-demand computer system.

The State of California spent $1 billion on a nonfunctional welfare database system. The

Assembly Information Technology Committee was considering scrapping California’s

Automated Child Support System, which had already overrun its $100 million budget by

more than 200%.5

The costs of the year 2000 problem has been estimated to be over $600 billion worldwide.6

4ACM SIGSOFT, Software Engineering Notes 15(3), 1990
5INSIDE RISKS, Communications of the ACM 40, 12, Dec 1997
6RISKS, 1998.
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Why bother with software engineering? (cont.)

Others are absolutely not acceptable!

The automatic propulsion control in our Boeing 737 had the occasional habit during

take-off at exactly 60 knots of cutting out. It was someone in our workshops who looked at

our listings found the cause. The programmer had spelled out what the propulsion control

should do under 60 knots and what it should do over 60 knots. But he had forgotten to say

how it should react at exactly 60 knots. So if at exactly 60 knots the computer asked for

the appropriate instruction it found nothing, got confused, and turned itself off.7
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Why bother with software engineering? (cont.)

Others are absolutely not acceptable!

The automatic propulsion control in our Boeing 737 had the occasional habit during

take-off at exactly 60 knots of cutting out. It was someone in our workshops who looked at

our listings found the cause. The programmer had spelled out what the propulsion control

should do under 60 knots and what it should do over 60 knots. But he had forgotten to say

how it should react at exactly 60 knots. So if at exactly 60 knots the computer asked for

the appropriate instruction it found nothing, got confused, and turned itself off.7

[With regard to the Lufthansa A320 accident in Warsaw] the spoilers, brakes and reverse

thrust were disabled for up to 9 seconds after landing in a storm on a waterlogged runway,

and the airplane ran off the end of the runway and into a conveniently placed earth bank,

with resulting injuries and loss of life. On 10 Nov, Frankfurter Allgemein reported that

Lufthansa had concluded there was a problem with the logic, and was requiring their pilots

to land in a different configuration and a different manner in such weather and runway

conditions, to ‘fool’ the logic. This decision was supported by the Luftfahrtbundesamt.8

7Hasch, 1983
8RISKS-FORUM Digest, Weds 1 December 1993 Volume 15 : Issue 30.
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The problem is enormous!

Software development statistics

• The typical software project requires 1-2 years and at least 500,000 lines of code

• Only between 70-80% of all projects are successfully completed

• Over the entire development cycle, each person produces on average less than
10 lines of code per day

• During development on average 50-60 errors are found per 1,000 lines of source
code. Typically this drops to around 4 after system release.
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How did we end up in this wretched state?
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Historical context: 1960s – 1970s

• Batch software (punch-cards!) with highly restricted memory

• Simple complexity

• Low-level, machine-oriented programming languges: Cobol, Fortran, Algol

• Development problems spurred interest in semantics and verification questions

• The term software crisis was coined in 1965

• Initiated research in structured data types leading to ALGOL-W (-68), C,
Pascal, Ada

Software Engineering Spring 2002
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Historical context: 1970s – 1980s

• Technology supports increasingly large projects

• Engineering in the large leads to new kinds of problems

• Challenge: programming in teams

– Development must be split ⇒ decomposition in analysis, specification, coding

– Unstructure programming methods don’t scale: global data, non-modular
construction, lack of well-define interfaces

• Gradual recognition that software development difficult!

• Evolution of concepts like software engineering, structured programming,
stepwise refinement, modularization, abstract datatypes

• Ideas embodied in languages like Pascal, Modula-2, ML, C++, Java

Software Engineering Spring 2002



David Basin 12

Current situation — new complexities

• Large scale, distributed, heterogenous systems, e.g., internet centric computing

• cheap microsystems = massive distribution

– Typical car has 100s of microprocessors

– computerized control systems are increasingly used in security critical
applications, e.g., controlling trains, planes, and nuclear reactors

Software Engineering Spring 2002
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Roll of software engineering

• Is there a ‘silver bullet’ ?

No!
Software engineering is less clear cut than, say, theoretical computer science.

• But there are techniques, methods, and tools, that can reduce the complexity
of constructing systems

• There are also techniques for building specific kinds of systems with high
degrees of reliability

Distribution systems, embedded systems, real-time systems, etc. all have
specialized development/validation techniques
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Role of a software engineering course

• Is it possible to present and practice the full spectrum of approaches to
software engineering in one class? No!

– The industrial setting is completely different from a University

– Insufficient time for development in the large

– Different problems demand different techniques

• We survey central concepts and experiment with selected approaches

• Specialized techniques presented in depth in advanced courses

Software Engineering Spring 2002



David Basin 15

Overview

1. Why bother with software engineering?

⇒ What is software engineering?

2. Structuring and abstraction in modeling
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What is software engineering?

• No concensus. Includes:

– Development process and business aspects, e.g., planning, cost and resource
estimation, documentation, check-points, etc.

– Informal heuristics or rules of thumb

– (Semi-)Formal methods

• Our definition

Software engineering is the practical application of scientific methods to the
specification, design, and implementation of programs and systems.

• Our focus: (semi-)formal methods

Software Engineering Spring 2002
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(Semi-)Formal Methods

• A language is formal when

– it has formal language (syntax)

– whose meaning (semantics) is described in a mathematically precise way

• A development method is formal when

– it is based on a formal language and

– there are semantically consistent transformation/proof rules

Software Engineering Spring 2002



David Basin 18

(Semi-)Formal Methods (Cont.)

• Semi-formal methods are widely used, for example UML

Often just syntax with a mere hint of semantics

• Formal methods offer numerous advantages

++ Typically more concise

++ Precise and unambiguous

++ Precise transformation rules ⇒ machine support possible

++ Uniform framework for specification, development, and testing

−− However they are more difficult for novices

Software Engineering Spring 2002
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Formal or Informal?

• Answer depends on task and available resources

• My sympathies lie with the following author:

This book is a discourse explaining how the task of programming (in the small as well as

in the large) can be accomplished by returning to mathematics. By this, I first mean that

the precise mathematical definition of what a program does must be present at the origin

of its construction. If such a definition is lacking, or if it is too complicated, we might

wonder whether our future program will mean anything at all. [...] At this point, I have

no objection with people feeling more comfortable with the word ‘English’ replacing the

word ‘mathematics’. I just wonder whether such people are not assigning themselves a

more difficult task.

(Jean-Raymond Abrial, the B-Book)

• we will examine both approaches

Also consider the integration of semi-formal with formal methods.
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Thematic overview

• Structuring the software development process

– Process models and support tools

• Modeling, specification, refinement, implementation, and verification

– (Semi-)formal methods and their integration in development

• Foundations cover many aspects of theoretical computer science

– Syntax and semantics from specification and programming languages

– Specification, verification, logic

• Method-oriented themes

– Problem analysis, modularization, OO-development, model building, . . .
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Schedule

2 Weeks: Overview, requirements analysis, development models and version
control.

4 Weeks: Specification and modeling

4 Weeks: Implementation and system construction

1 Weeks: Testing

Project is of central importance! Theory without application is useless!
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Note on the role of languages?

• (Almost) all programming languages are equivalently expressive

• But some provide better support for development

– Datatypes with abstraction/information-hiding

– Parameterization (for reusability)

– State/assignment?

– Strong typing?

– Inheritance?

• Wir will use Java

Supports OO-programming and the use of class libraries
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Overview

1. Why bother with software engineering?

2. What is software engineering?

⇒ Structuring and abstraction in modeling
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Modeling

• The goal of development is to solve problems in the real world

• Structuring and abstraction are critical: the real world is complex!

• Modeling are built in the early development phases

Goal: specify the requirements clearly and precisely while avoiding a premature
commitment to algorithms or datastructures

• Later one builds models of a possible implementation architecture

Model sketches components, interfaces, communication, etc.

• Modeling style depends on notion of “component”, e.g., function, procedure,
class, module, . . .
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Structuring and abstraction in modeling

• Important for overcoming the complexity of program development in the large:

Structuring serves to organize/decompose the problem/solution
Abstraction aims to eliminate insignificant details

• Classical approaches to structuring and simplification include:

Functional decomposition: decomposition in independent tasks
Parameterization and generic development: reusability
Model simplification: to improve understanding of tasks and possible

solutions
Information-hiding: interfaces and property-oriented descriptions
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Structuring (Cont.)

• In all cases, interfaces must be clearly described

Interface: imagined or actual boarder between two functional entities with
fixed rules for the transfer of data

Syntactic properties: the available rules, the types of their arguments, etc.
Semantic properties: a description of the entities behavior; goal is to support

the proper use of the entity.

• Interfaces also provide the basis for communicating and explaining (sub)systems
between the specifier, implementer, and user

• Correctly describing interfaces and ensuring their correct use is a central aspect
of software engineering
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Simplicity in modeling as a key to problem solving

In an American quiz-show, the candidate can win a car if he correctly guess behind which of

the three doors A, B , and C , the car is hidden. To make things more interesting, the show

proceeds as follows: First the candidate selects one of the three doors. Then the quizmaster

opens one of the two remaining doors, choosing so as to not reveal the car. Afterwards, the

candidate has the possibility of switching the door he initial selected for the remaining door.

• After the initial selection, the car is behind one of the two doors. How should
the candidate proceed?

• Strategies

1. He selects a door and does not change his selection
2. He selects a door and later changes his selection, i.e., choosing the remaining

door

• A probabilistic analysis is nontrivial

• Solution is simple using an appropriate model!
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Solution

Claim: Strategy 2 can be seen as allowing the candidate to choose two doors, and
win when the auto is behind one of them.

Explanation: Suppose he wishes to select A and B . Then he first chooses C .
After the quizmaster opens one of A or B the candidate switches from C to the
remaining door. Hence he wins the car if it is behind A or B .
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Modeling example #2: Mutilated checkerboard
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• Can the board with two missing corner pieces be tiled with the piece shown?

• Solution:
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Modeling example #2: Mutilated checkerboard
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• Can the board with two missing corner pieces be tiled with the piece shown?

• Solution: seek an invariant!

Requires understanding important aspects of problem
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Conclusion

• Software engineering concerns development in the large and related problems

• Techniques for problem structuring and abstraction play an important role

• Formality can be helpful, in particular in

– creating meaningful, unambiguous models of systems

– rigorously analyzing and transforming these models

• We will focus on a software development process based on building models,
analyzing models, and transforming models into robust, correct, and evolvable
systems
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Overview

• The software life cycle

• Software models

– Waterfall and V-model

– Evolutionary development

– Rational unified Process

• Evaluating models
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Software development — historically

• The code-and-fix development process

1. Write program
2. Improve it (debug, add functionality, improve efficiency, ...)
3. GOTO 1

• Works well for 1-man-projects and Informatik I assignments

Unstructured development fine for small projects

• Larger projects =⇒ software crisis

– Poor reliability

– Disastrous when programmer quits

– Inappropriate for multiple man-year projects

– Expectations often differ when the developer isn’t the end-user

– Maintainability? What’s that?

Software Engineering Spring 2002
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Requirements for development process

• A procedure to guide and control the entire development.

• Should support developing high-quality systems.

Adequacy: System satisfies desired requirements

Usability: Appropriate GUIs, documentation, etc.

Reliability: Robustness, security, etc.

Maintainability: System easy to modify and improve

Cost: Acceptable development costs (time, money, etc.)

Performance: Resource use is minimized (or not wasted)

Software Engineering Spring 2002
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Software development activities

• Development process: activities and results of software production

• Four basic activities:

Specification: Definition of functionality and constraints
Development and Implementation: Production of system
Validation: Verification, testing, etc.
Maintenance: Changes and improvements

• Subdivision of activities depends on the particular process employed

Differs depending on the kind of system built and the organizational context

Software Engineering Spring 2002
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Process models

• Numerous proposals for process models:

Descriptive: How are systems developed?
Prescriptive: How should systems be developed?

• Examples:

Waterfall: Activities staged in phases, each with a well-defined deliverable.

Evolutionary: Activities are interleaved. System quickly develops from rough
specification.

Formal Transformation: Stepwise transformation of a formal specification
into a program.

Construction from reusable components: Reuse of existing components.

Software Engineering Spring 2002
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Waterfall model (Royce 1970)

System and

Software Design

Implementation and

Integration and

Operation and

Requirements
   Definition

Unit Testing

System Testing

Maintenance

• First process model (also called phase model)

– The development is decomposed in phases

– Each phase is completed before the next starts

– Each phase produces a product (document or program)

• Enthusiastically welcomed by managers!
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Waterfall phases

Requirements analysis and definition:

• System requirements defined with customer.
• Result should be understandable by both customer and system developers

System development:

• Requirements are decomposed into software and hardware requirements.
• A system-architecture is fixed.

Implementation and testing of components:

• The system is realized as a set of components (objects, modules, units, ...).
• Units are individually tested.

Integration and system testing: Units are integrated, integration tests are
performed, and the resulting system is delivered.

Operation and maintenance: Bug fixes, improvements, etc.

Software Engineering Spring 2002
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Waterfall process assumptions

• Requirements are known from the start, before design

• Requirements rarely change

• Design can be conducted in a purely abstract way

• Everything will all fit nicely together when the time comes
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Advantage of waterfall: transparency

Activity Result

Requirements analysis Feasibility study, requirements sketch

Requirements definition Requirements plan

System specification Functional specification

Test plan,

Development of user documentation

Architecture development Architecture specification

System test plan

Interface development Interface specification

Integration test plan

Detailed development Specification, unit test plan

Programming Program

Unit test Report

Module test Report

Integration test Report, final user documentation

System test Report

Acceptance test Report, documentation

The output of one phase is the input of the next.

Software Engineering Spring 2002
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Problems with the waterfall

• The process assumptions typically don’t apply! E.g., requirements typical
imprecise and mature as development advances

– The Big Bang Delivery Theory is risky: proof of concept only at the end!

• Too much documentation! (Paper flood ⇒ CASE TOOLS)

• Late deployment hides many risks

– Technological (well, I thought they would work together...)

– Conceptual (well, I thought that’s what they wanted ...)

– Personnel (took so long, half the team left)

– User doesn’t see anything real until the end, and they always hate it

– Testing comes in too late in the process

Software Engineering Spring 2002
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Problems (cont.)

• Unidirectional flow often too stiff: feedback is needed between phases

• Unidirectional flow means problems are pushed to others or programmed around

• Alternative: weakening through feedback

System and

Implementation and

Integration and

Operation and

Maintenance

Requirements
   Definition

Unit Testing

Software Design

System Testing

New problem: frequent iteration makes checkpoints difficult

Software Engineering Spring 2002
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Variations on a waterfall

• Many variants, depending on organization, country, and software product

• The V-Model is an (ISO-Standard) Model for military and administrative
projects in Germany

Regulates all activities and products as well as product states and relationships
during IT-development and maintenance

• Built from different submodels. Describes system development, configuration
management, project management (purchasing, planning, ...), etc.

• System development model can be seen as a V-formed variant of the waterfall.

Software Engineering Spring 2002
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Evolutionary development

• Idea: build a prototype and continually improve it.

Build in customer feedback at each iteration

• All process activities occur simultaneously

• Two kinds of development:

Exploratory Programming: Query customer requirements. First implement
basic requirement and later add more complex ones.

Throw-away-Prototyping: Build prototype to understand the customer’s
requirements. The prototype and experiments with the customer help to
define the requirements.
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Evolutionary development (cont.)

Prototype Development

Requirements and Analysis

Installation and Use

Change to Product Definition

 

Yes

Maintenance

No

Validation

New Prototype
necessary?
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Evolutionary development (cont.)

• Theoretically, wide applicability; many systems built this way

• Problematic — look ma, no hands!

Not transparent: Difficult to judge progress. Managers have no checkpoints
Poorly structured code: due to frequent modification
Requires a skilled team: Small, skilled, and motivated group

• Practically, narrow applicability: small systems with limited life times

• Typical example: AI projects where it is difficult to specify human capabilities
and activities
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Rational Unified Process

• Wide spread methodology championed by Rational Corporation

• Combines water-fall and evolutionary development

Plan a little, design a little, code a little.

• Aims to minimizes risk of failure

Breaks system into mini-projects, focusing on riskier elements first

• Other (claimed) advantages

– Encourages all participants, including testers, integrators, and documenters to
be involved earlier on

– Mini-waterfalls centered around UML, a particular OO-methodology

– CASE-TOOL support (of course, from Rational)

• Does it work?

Many positive case studies although benefits difficult to quantify
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David Basin 18

Evaluating process models: attributes

Clarity: How precise is process defined? How easy is it to understand?

Transparency: Do activities produce clearly defined results?

Support: Can activities be machine supported?

Acceptability: Will developers accept the process?

Reliability: Are errors avoided or quickly discovered?

Robustness: Can the process be continued, despite problems?

Maintenance: Can changes be easily integrated?

Time factor: How quickly can a system be built?
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A comparison: software development versus ship building

• Software lacks form and body

The manager of a ship yard can see components and measure progress

• The software development is not standardized

Ship construction has a long history and standard construction procedures. One
knows how to specify and test ships.

• Software products are usually not standardized

– Many ships are similar.

– In contrast, many software projects involve new challenges/technologies

– Some kinds of systems are fairly standard =⇒ component-based systems

• Software errors are acceptable

A company that builds sinking ships will be sued!
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Conclusion

• The software development process needs structuring

• Various models prescribe structure with different advantages and disadvantages:

– Strong structuring results in inflexibility

– Weak structuring degenerates to code-and-fix

• Improvements and, in particular, tool-support are active research areas

• We will use the water-fall model in the class

We will support feedback by using version management
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A welcome problem. . .

You have inherited 100 Million Euro and want to start your own

airline company!

What system should your future IT-department design?

Software Engineering Spring 2002
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Well, there is some data to administer

• Flights:

Routes, times, seats, crew, food (first class, vegetarian, . . . )

• Crew and support staff

Personal data, tasks, time plan, pay-roll

• Customers

Reservations, accounts, Miles & More, meat-eater, . . .

• Inventory

Airplanes, fuel, vegetarian food, deliveries (carrots, . . . )

Software Engineering Spring 2002



David Basin 3

And don’t forget

• Planning programs (time and cost plans)

• Support for E-commerce

– Customer-to-business, e.g., buying tickets, checking status

– Business-to-business, e.g., supply-chain management

– Web pages (internal/external)

• Building a system that is secure, redundant (fault tolerant), evolvable, . . .

and this is only the beginning!

Software Engineering Spring 2002
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Overview

• Background/motivation

• The analysis and definition phase

• Structuring requirements

• An example

Software Engineering Spring 2002
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The context

System and

Software Design

Implementation and

Unit Testing

Integration and

System Testing

Operation and

Maintenance

   Definition

Requirements

First phase: requirements analysis & definition
Sometimes called requirements planning
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Goal
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Goal (cont.)

The goal: Specify the requirements as detailed as possible, but as abstract as
possible.

• To understand what the product should do

– Otherwise programming is pointless!

– Exception: rapid prototyping to aid analysis itself

• As a contract with the customer

• To plan the development

• Many projects require a concrete product definition

– Companies, governments, most large companies . . .

– The German, term Pflichtenheft is sometimes used to stress the legal aspects.
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Planning is difficult

• What does one want?

The hardest single part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as difficult as
establishing the detailed technical requirements . . . . No other part of the
work so cripples the resulting system if done wrong. No other part is more
difficult to rectify later. (Brooks 1987)

• Compromises are necessary between different, contradictory user requirements

Example: Bank customers want security. Bank employees want minimal
restrictions and overhead.

• Delayed effects are difficult to predict

Example: Influence of the invention of the auto on the sexual behavior of
American teenagers
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Possible structuring of requirements analysis

Name For whom Question addressed

Requirements analysis Customer (Managers) What is the problem (rough)?

Users Answer: Product sketch in natural

Contract manager language (+figures)

System architects

Requirements specification Customer What is the problem (detailed)?

System architects Answer: Product definition

Programmers Precise structured document

Serves as contract

Software specification System architect What is the solution (rough)?

Programmers Answer: System architecture
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Structuring requirements analysis — an example

Product sketch:
1. The program should read files over the Internet

Product definition:
1.1 The user can access and view files over the Internet

1.2 A file is given through a URL, typed in from the keyboard

1.3 Various types of URLs are supported

1.3.1 ‘html’ means that the file is hyper-text . . .

(Explanation of how are files loaded, displayed, browsed, . . . )

Software specification:
(Abstract description of the main browser routines, . . . )
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Structuring requirements

• Unstructured text is poor. Example: Editor for a CASE Tool)

2.6 Grid facilities To assist in positioning entities on a diagram, the user may turn on

a grid in either centimeters or inches, via an option on the control panel. Initially, the

grid is off. The grid may be turned on and off at any time during an editing session and

can be toggled between inches and centimeters. A grid option will be provided on the

reduce-to-fit view but the number of grid lines shown will be reduced to avoid filling the

smaller diagram with grid lines.

• Problems

– The first sentence mixes different requirements

– Incomplete description (e.g., units used when turned on)

– Justification partially mixed with specification
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Structuring requirements (cont.)

Better is to describe fundamental properties. . .

2.6 Grid Facilities
2.6.1 The editor shall provide a grid facility where a matrix of

horizontal and verticle lines provides a background to the
editor window. This grid shall be a passive grid where the

alignment of entities is the user’s responsibility.

Rationale: A grid helps the user to create a tidy diagram with

well space entities. Although an active grid, where entities

“snap-to” grid lines can be useful, the positioning is imprecise.

The user is the best person to decide where entities should be

positioned.

2.6.2 When used in “reduce-to-fit” mode (see 2.1), the number of

units separating grid lines must be increased.

Rationale: If line spacing is not increased, the background will

be cluttered with grid lines.

Specification: ECLIPSE/WS/TOOLS/DE/FS Section 2.6
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Structuring requirements (cont.)

. . . and to describe basic operations

3.5.1 Adding nodes to a design
3.5.1.1 The editor shall provide a facility where users can add

nodes of a specified type to a design. Nodes are selected

(see 3.4) when they are added to the design

3.5.1.2 The sequence of actions should be as follows:

(1) The user should select the type of node to be added

(2) The user moves the cursor to the appropriate node

position in the diagram and indicates that the node

symbol should be added at that point.

(3) The symbol may then be dragged to its final position.

Rationale: The user is the best person to decide where to

position a node on the diagram. This approach gives the

user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/TOOLS/DE/FS Section 3.5.1
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Structuring requirements documents

• No standard structure

– Some organizations have their own standards

– Can also depends on process model and the kind of system developed

• Some common principles

– Describe goals, functionality, environment/use

– Description should be abstract and avoid unnecessary commitments
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Example: ANSI/IEEE-Standard STD-830-1984 (simplified)

1. Introduction

(a) Product objectives
(b) Product scope
(c) Definitions, acronyms, abbreviations
(d) References
(e) Overview of requirements description

2. General description

(a) Product function
(b) User description
(c) General restrictions
(d) Acceptance criteria and dependencies

3. Specific requirements

4. Appendix
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NASA-Standard SMAP-DID-P200-SW (simplified)

1. Introduction

2. Related documentation

3. Requirements on external interfaces

4. Requirements specification

(a) Processes and data requirements
(b) Behavior and quality requirements
(c) Security requirements
(d) Implementation constraints and installation requirements
(e) Development goals

5. Plan for incremental delivery of subsystems

6. Definitions, acronyms, abbreviations

7. Notes

8. Appendix
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V-Model-Standard: customer requirements (simplified)

1. General

2. Analysis of status quo (current situation)

3. IT security goals

4. Threat and risk analysis

5. System requirements

(a) General system description and intended use
(b) Organizational context for system deployment
(c) Description of external interfaces
(d) Functionality requirements
(e) Quality requirements

6. Constraints

(a) Technical constraints
(b) Organizational constraints
(c) Miscellaneous constraints
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Let’s consider a concrete example
of a simplified product sketch.
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Project sketch — organization

Section I Problem description and goals

Section II Functionality

Section III User profile

Section IV Acceptance criteria

Section V Development, deployment, and maintanance environments, interfaces,
and other considerations

Section VI General architecture (solution sketch)

Section VII Information sources (e.g., contact persons, manuals, glossary)
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Project sketch — an example (adapted from Pagel/Six)

Customer (bank manager or head of IT division) to IT consultant:

The entire account processing including cash payments, checks, and electronic transactions

(e.g., transfers and e-banking) for our bank branch are currently supported by an antiquated

accounting system. The support of our bank employees and, especially, our customer

representatives is inadequate: information about customers must be individually extracted

from individual accounts. Simple queries such as computing balances over multiple

customer accounts cannot be carried out directly.

We would like a new branch information system that extends the functionality of the current

system and provides better support for the customer representatives and other bank

employees. Moreover, we expect an improvement in overal productivity.

Typical: imprecisely defined improvement of the Status Quo.
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Bank information system (BIS)

Delivered on . . .

by . . .

Section I Problem description and goals

Section II Functionality

Section III User profile

Section IV Acceptance criteria

Section V Development, deployment, and maintanence environments, interfaces,
and other considerations

Section VI General architecture (solution sketch)

Section VII Information sources (e.g., contact persons, manuals, glossary)
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Project sketch BIS

Section I. Project description and goals

The information system should help administer data and accounts for customers of
branch banks. Primary goals are:

• Fast retrieval of up-to-date information about customers and their accounts, to
aid customer support

• Cost-effective and secure administration of payments

• To automate the processing of standing orders

The system should allow for a printer that prints account statement so that . . .

Employee training is planned. Maximally 2 employees per branch . . .
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Project sketch BIS

Section II: Functionality

Develop a comprehensive Bank Information System (BIS) for the customer’s
different branch banks. Functionality can be loosely categorized as follows:

a) Account administration

The analysis of the current customer and account data indicates that the following
functionality is required:

• Create new accounts

• Delete and change accounts

• Create, change, and delete standing orders

• . . .

b) Payments

Payments require the following functionality: . . .
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Project sketch BIS

Section III: User profile

Users of BIS are, exclusively, employees of the branch bank. They are

• Bank tellers who process cash payments

• Customer representatives who use the information system to advise customers
and administer their data

• Administrators who maintain user data, fix technical problems, and are
responsible for backups.
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Project sketch BIS

Section IV: Acceptance criteria

The primary criteria are the execution time of the various functions and the
correctness of account data and the automatic payment processing.

The time for manual activities (payments, information processing, account
administration) should be substantially reduced with respect to the current system.

The automatic functions . . .

As far as possible, all data should be administered in an object-oriented database
management system. This is mandatory for customer and account data.

The security of the data must be guaranteed using a mechanism for access control.

Testing should be employed to verify all procedures that manipulate account data.
Deposits, withdrawals, and transfers must function absolutely correctly.
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Project sketch BIS

Section V. Development, deployment, and maintanance environments, interfaces,
and other considerations

Each branch should have its own software copy as well as a mainframe computer
with multiple graphic terminals. The system operates in multi-user mode.

The system should be linked to an external central system that coordinates the
work of the individual branches and maintains central data.

The development and maintenance environment consist of Unix workstations and
the operating environment consists of a SUN-compute server running Unix and
supporting an Oracle database system. The data transfer between the central
system and the BIS is over Datex-P cables. . . . Graphical interfaces in the current
standard (e.g., OSF-Motif) will be used.

The system includes a one year guarantee. A maintanance contract can later be
arranged.

Subsequent system extensions possibly include a subsystem to aid investment
planning and support for managing life-insurance policies.
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Project sketch BIS

Section VI. General architecture (solution sketch)

The system is based on a Client-Server-Architecture within a local-area network.

All static customer and account data are maintained in a relational database on
the server side. . . .

Cash transactions (deposits/withdrawals), for branch accounts, are carried out
within the BIS. Non-cash transactions (e.g., checks, transfers, etc.), are first
processed by the BIS using a special transfer-account. From this special account
. . .

VII. Information sources (e.g., contact persons, manuals, glossary) . . .
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Requirements validation

• Goal: check whether the sketch is:

Valid: Is the right functionality specified? For whom?
Consistency: There should be no conflicts between requirements
Completeness: The entire functionality should be specified
Realistic: It must be possible to implement the system under the given

resource (time and financial) constraints

• How? Different approaches with different advantages/disadvantages:

– ‘Walk-through’ and ‘requirements review’

– Construction of a prototype

– Use of logic-based tools

• Process models sometimes prescribe form of analysis
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The requirements plan

• A more detailed product sketch

– Precise description of external system behavior: functional and non-functional
requirements

– Uses detailed system model (coming shortly!) and views

• Typically combines

informal languages: natural language
semi-formal languages: graphical notation, Design description languages

(e.g., UML)

• But seldomly

formal: automata, petri-nets, first-order logic, . . .

as formal languages are considered less customer friendly
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Example: data-flow modeling

• System modeled as data-transformer

• Describes data as well as function input and output

• Control flow not fixed

• Expresses only (very weak!) functional requirements
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Example: event-oriented modeling

• System modeled as reactive system

– System consists of states and transitions

– Transitions describe reactions to events

• Models often more powerful than automata

– Hierarchical or with parallelism

– Sometimes fully formal

– Basis for, e.g., developing real-time systems

• Functional requirements are not considered!

DISCONNECT

FOR 

WAIT

CALL

DISCONNECT
FROM
COMPUTER

CONNECT
TO
COMPUTER

CONNECT
TO
HANDSET

DETECT END
OF CALL

DETECT END
OF CALL

ACKNOWLEDGE
CONNECTION

DATA

VOICE

CALL
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Coming up next. . .

• We will study modeling in detail

– Emphasis: (Semi-)formal modeling languages and their application

– Modeling data, objects, functions, processes, . . .

– Semi-formal languages like UML and formal languages like Z

• But next: version control and its role in the software process
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Overview
• What’s Version Management?

• Concepts: Branches (Zweige), Modules,
                   Repository, Distribution, Security

• Outlook: Configuration management

• A concrete example: CVS 
•  pragmatics of CVS
•  waeknesses of CVS

 

• Outlook
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What’s Version Management?

• administration of sequences of documents 
(sources, *.c, *.ML, *.tex, ...
  documentation, *.o, *.ps, *.gz)

and their reconstruction

• optimisation and compression

• administration of distributed development
(and synchronisation ("Merge"))

• generation of releases
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•

•

Basic Notions
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Basic Notions (2)

• Branches (Entwicklungszweige)

1.1 1.5

1.2.4.3

1.2.2.4

1.2.4.21.2.4.1

1.2.2.3.2.1

1.2.2.31.2.2.21.2.2.1

1.41.31.2

Branch 1.2.2

Branch 1.2.4

Branch 1.2.2.3.2

main trunc

1.1.1.1 (Vendor−Branch 1.1.1)
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Basic Notions (3)

•

•

•
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Basic Notions (4)

•

•

⇒ 
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• Tagging  = symbolic names for
                  (collections of)  versions                
                                           (=configurations)

Vision Magement

1.1

1.4

1.3

1.2

file 1 file 2 file 3 file 4
1.1

1.3

1.2

1.1

1.1

1.5

1.4

1.3

1.2

1.1

1.5

1.4

1.3

1.2

file 5

tag_1
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• Access to the Repository via Internet
• Via Serverprocesses (e.g. CVS: demons, Shell)
• Via NFS (z.B. ClearCase; mouted "working copies")

•

•

Distributed Version Management
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• Towards the Generation of Configurations:
produce compiler with coder X on platform Y

• requires dependency model, 
change propagation,
control of the build process
(like make, but also event−controlled (ClearCase))

• work flow management 

• Systems: Aegis, ClearCase, StarTeam,  . . . 

Configuration Management (1)
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• Pro’s:

• best "reconstructibility"

• effektive management of many
configurations possible

• file−systemstructure can be versioned too
(rename/move of directories)

• data dependency model can be versioned,
which can be exploited semantically
(change propagation)

Configuration Management (2)
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An Example: CVS

• Concurrent Version System

• repository remote

• multiple working copies without lock

• terminology: "Version" ⇒ "Revision"

• open source standard, Unix−add−on,

• registration of configurations  (tags) 
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CVS − Basic Operations

cvs

<cvs−options>

add −m msg           file
commit −m msg −r branch        file
checkout −j tag −r tag −A module
update −d −A −r tag −j rev file
diff −r rev −D date file
tag −d tag −F −R file
rtag −r tag −b module
status −R −v file
admin −m rev:msg −o rev file
init

−d dir
−e edit
−H

cvs <cvs−commands> <cmd−options> <args>
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CVS − Pragmatics: Overview

• Create 
• working copy (initial)
• file/directory
• project/module
• repository

•  Synchronyse
• working copy 

(normal)
• modules, branches

• Manage
• difference
• modifications, delete
• register configurationen 
• status

• Diversities
• notifications
• wrappers
• logs
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CVS − Pragmatics: Create

• Creation of a working copy

           mkdir work; cd work;
         cvs −d path checkout  .
         rm project1 project2 project3

or

         mkdir work; cd work;
         cvs −d path checkout softech−www
         cvs −d path checkout CVSROOT
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CVS − Pragmatics: Create

• Creation of Files/Directories
           cd work/softech
                    vi bla           (* create and edit bla *)
                    cvs add bla 
         cvs commit bla

resp. 
         cd work/softech
         mkdir blubdir
         cvs add blubdir
         ls blubdir
         > CVS . . .

• Creation of Subsystems (for extern src only!)
            cvs import bla bla fdfg      
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CVS − Pragmatics: 
Synchronisation

• of files:

                   vi bla           (* modify bla *)
                   cvs ci bla
        >cvs commit: Up−to−date check failed for ‘bla’
        >cvs [commit abotred]: correct above errors first
        cvs update bla
        > U bla
        vi bla
        cvs ci bla

• of branches:
          cvs update −j R1fix:yesterday −j 1.2 bla
        cvs co −j R1fix mod
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CVS − Pragmatics: Manage 

• Status, Logs
    cvs status −v
   cvs log bla

  
• Differences

    cvs diff −r 1.14 −r 1.16 bla
   cvs diff −r RELEASE1 −r RELEASE2 > diffs

• Delete (for administrators only)
    cvs admin −o 1.1:1.5 bla 
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CVS − Pragmatics: Diverse

• Notifications (Loginfo)

• Wrappers

• Comment Headers

• Shell−Variablen
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CVS−Weaknesses

• non−elementary use complex, 
some default−options is tricky.

• roles und perms: UNIX−Groups, Password

• architectures (filetrees) of configurationen
and dependencies were not covered
(filetree must grow monotonically)
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Version Management:
Conclusion & Outlook

• version management is a
key technology in SE

• VM useful, but introduces also some 
problems and some buraucracy

• a step to configuration management 
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Version Management:
Conclusion & Outlook

• study of merge −operations of specific 
formats, which are of interest:

• code
• text from word processors
• proof objects



Semi-formal Modeling Languages

David Basin

Institut für Informatik
Albert-Ludwigs-Universität Freiburg

Spring 2002

Software Engineering



David Basin 1

Overview

• Motivation

• A simple example

• OO-modeling languages and methods (2 weeks)

– Ideas

– Some languages/methods

– Use, advantages, and limitations of semi-formal approaches.

Software Engineering Spring 2002
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Context

System and

Software Design

Implementation and

Unit Testing

Integration and

System Testing

Operation and

Maintenance

Requirements
   Definition

Goal: Specify the requirements as far as possible, but as abstract as possible.

Modeling languages and methods are used here!
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Modeling

• Definition: A model is a construction or mathematical object that describes a
system or its properties.

– Example from physics: distance = speed × time

– A construction engineer models buildings and employs static models (e.g., of
stress and strains) for their analysis

• In computer science we model systems, their operating environment, and their
intended properties

These models aid requirements analysis, design, and analysis of systems

• The construction of models is the Raison-d’être of planning

=⇒ research on modeling languages and modeling methodologies

Motto: Engineers build models, so should software engineers!
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Which Modeling Language?

• There are hundreds! Differences include:

System view: static, dynamic, functional, object-oriented, . . .
Degree of abstraction: e.g., requirements versus system architecture
Formality: Informal, semi-formal, formal
Religion: OO-school (OOA/OOD, OMT, Fusion, UML), algebraic

specification, Oxford Z/CSP-Sect, Church of HOL, . . .

• Examples:

Function trees, data-flow diagrams, E/R diagrams, syntax diagrams, data
dictionaries, pseudocode, rules, decision tables, (variants of) automata,
petri-nets, class diagrams, CRC-cards, message sequence charts, . . .
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Methodologies often mix languages

Z/CSP:
– 2 models: functional and dynamic/event oriented

– 2 languages

OMT: Object Modeling Technique, Rumbaugh et. al.

– 3 models: object, dynamic, functional

– 3 languages: class diagrams, statecharts, data-flow diagrams

Unified Modeling Language: – 9 languages: class, object, use cases, sequence,
collaboration, statecharts, activities, component, and deployment

We will start with three simple examples: E/R-Diagrams, data-flow diagrams, and
class models.
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Entity/Relationship Modeling (E/R)

• Specifies sets of (similar) data and their relationships

Relationships are typically stored as tables in a data-base

• Three kinds of ‘objects’ are visually specified

RE A

Entities: sets of individual objects, differing in their properties

Attributes: a common property of all objects in an entity set

Relations: (‘semantic’) relationships between entities
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E/R example

• Student & Class entities

– A Student has a name, age, and identity

– A Class has a subject and course id

– In programming languages: attributes 7→ basis types, entities 7→ record types

type Student = student(name : string , age : N, id : N)

type Class = class(subject : string , course id : string)

• Relations are graphically represented, e.g., Student enrolled in Class

Student

Class

enrolled_in

name

age

id

course_id

subject
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E/R: a larger example (without attributes)

is

employee

divison

project leader
is

uses

partout of stock

delivers

supplier

is ill

belongs to leads

of
boss

is
employed

by

on

project
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E/R: advantages and disadvantages

++ 3 concepts and pictures =⇒ easy to understand

++ Tool supported and successful in practice.

−− Not standardized

– Are relations binary or n-ary? OO extensions (e.g. is a)?

– Notation for semantic conditions? E.g., R is injective:

∀ x x ′ y .(x R y ∧ x ′ R y) ⇒ x = x ′

A R B

−− Many relations cannot be specified

Every n-ary function corresponds to an n+1-ary relation

For more, see data-base classes!
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Data-flow diagrams

• Graphical specification language for functions and data-flow

• Based on symbols (not standardized):

Function Input Output

Data Flow Data Store

• Useful for requirements plan and system definition

Provides a high-level system description that can later be refined
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Example: library information system1

List of topics

List of titles

List of Authors

Shelves
Get a

Book

Topic
Search by

Topic Request
by User

Book Request
by User

Display of 
list of titles

List of books borrowed

Book

Author

Title

Title

Topic Topic

Book Title/Author and User Name

Book

Book title, user name

List of titles

Book Reception

First approximation. Unspecified how books are found, etc.

1Source: Sommerville
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Partial DFD-Refinement

Shelves
Get a

Book

Book

Position
Find Book 

List of books borrowed

by User
Book Request

Book Title/Author and User Name

Book

List of titles

List of Authors

Title

Author

Book title, user name

<shelf#, book#>

Book Reception

• Describes how a book is selected

– Still inexact. Are both title and name needed?

– Semantics suggested by the function names

– Control open. Execution scheduling is not specified
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Hierarchical DFDs & development methods

• Hierarchical DFDs yield a module structure

M1 M2

M

CA

B

– Procedure M calls either M1 once or M2 multiple times
– M passes B to M1 and receives A back and M receives C from M2

• Example: architecture of the module order book.

Find Book

Position Book

Get a

Deliver

Book

<shelf#, book#> Author
Title

Book

<shelf#, book#>

• Can be supported by CASE-tools, e.g., for the automatic generation of classes
or (module) signatures.
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Class models (High-Level)

• Emphasis: objects and relationships Goal: clarity and reusability

• Objects are grouped into classes depending on their attributes and methods

House type: Land house
Owner: Dr. Kaiser
Address: Freiburg
Area: 400 [qm] 

Pool?: Yes
Garten: 5000[qm]
Year built: 1976
Sales price: 1.5 Mio.[Euro]

# baths: 3

House type: Bungalow
Owner: Herzog
Address: Merzhausen
Area: 250 [qm] 
# baths: 2
Pool?: No
Garten: 1500[qm]
Year built: 1986
Sales price: 1 Mio.[Euro]

House type: City house
Owner: Ottmann
Address: Emmendingen
Area: 200 [qm] 
# baths: 2
Pool?: No
Garten: 400[qm]
Year built: 1990
Sales price: .8 Mio.[Euro]

(House) (House) (House)

Ask sales price Ask sales price Ask sales price

• Class hierarchy formalizes inheritance, expresses shared attributes/methods.

Owner
Address
Year built
Sales price

House type
Area
# baths
Pool?
Garten

# buro rooms
# floors
Elevator?
Parking Garage?

Property

Ask sales price

House Buro

Ask # rooms
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OO-Modeling

• Many proposed methodologies: OMT, OOA/OOD, UML, ...

• Example: Object Modeling Technique (OMT) includes:

Object model: class hierarchies and associations between classes (like E/R)
Functional model: describes information flow between objects (like data-flow)
Dynamic Model: event oriented, e.g. (extended) automata (specify control)

• Advantages

– Supports modular development of reusable systems

– Often corresponds to real (e.g., graphic) objects

• Disadvantage: semantics not so clear
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History of modeling languages

• Different branches: formal versus semi-formal

Formal: research since the 1960s. VDM, Z, algebraic specification, process
algebras, . . .

Semi-formal: E/R-diagrams, data-flow diagrams, . . . from the 1970s

• Short history of OO modeling

– Proliferation of methods from 1970–1990 (OOA/OOD, OMT, OOSE, ...)

– Method war between the different languages and methods

– Campaign of the “3 Amigos” (now all at Rational Software Corporation)

– Grady Booch’s OOD

– James Rumbaugh’s OMT

– Ivar Jacobson’s OOSE (based on “Use Cases”) and Objectory

– Standardization in the Unified Modeling Language, 1995–???
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UML overview

What? 9 languages for modeling different views of systems

– Use Case models describe the users’ view of the system

– Static models describe parts of the system and their relationships

– Dynamic models describe the (temporal) behavior of the system

Why?
– De facto standard!

– Tool support (e.g., from Rational)

– More-or-less intuitive

Why not?
– Semantics? What do the models mean?

– Support for analysis is (currently) weak

– Complicated and cryptic bits resulting from committee driven development
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UML: Overview (cont.)

Major Area View Diagrams Main Concepts

structural static view class diagram class, association, generalization,

dependency, realization, interface

use case view use case diagram use case, actor, association,

extend, include, use case generalization

implementation component component, interface,

view diagram dependency, realization

deployment deployment node, component,

view diagram dependency, location

dynamic state machine statechart state, event,

view diagram transition, action

activity activity state, activity, completion

view diagram transition, fork, join

interaction sequence interaction, object,

view diagram message, activation

collaboration collaboration, interaction,

diagram collaboration role, message

model model class package, subsystem,

management management diagram model

extensibility all all constraint, stereotype, tagged values
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UML: Overview (cont.)

• UML is a mixed blessing

– Building models is a fine thing!

– UML is but one of many possibilities

– More appropriate for requirements analysis than design

• We will consider only parts of UML

– In particular: Use Cases, Class Models, Statecharts

– Full details ⇒ class on OO-development

• Let’s start with Use Cases!
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Use Cases

• Use Cases are used for high-level requirements analysis

– Focuses on requirements of particular (classes of) users

– A user is anything outside of the system (e.g., human or another system)

• Developed from Jacobson (ca. 1990), based on idea of scenarios

• Incredibly simple! Diagrams represent possible interactions between:

Actors: prototypical users in certain roles
Use Cases: their tasks

• Example: a library system Use Case

Book borrower

Reserve book
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Use Case Diagrams

Browser

Librarian

JournalBorrower

BookBorrower

Library system

Reserve book

Borrow copy of book

Return copy of book

Extend loan

Browse

Update catalogue

Borrow journal

Return journal

Collection of Use Cases (+ scenarios) describes the system functionality
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Use Cases (cont.)

• Use Cases are extended with text or other models

– Extensions describe steps and results

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

aMember : BookBorrower

Sequence diagram describes a possible execution in a loan scenario

• How does one identify Use Cases?

Identify services that the system provide that yield results of value.
(Use Case shouldn’t be too trivial.)
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Use Cases: possibilities for further structuring

• Development in the large requires structuring models!

• Use Cases offer several possibilities.

– Extensions provide a preview of the UML-game!

• Tradeoff: More complicated modeling languages are less intuitive!

Moreover, changes/extensions tend to vary over time
; the UML Standardization problem
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Reuse via <<uses>>

• Common behavior can be factorized

• Example: Both “Extend loan” and ‘Borrow copy of book” must check if the
book is reserved

<<uses>>

<<uses>>

Extend loan

Check for reservation

BookBorrower

Borrow copy
of book

• Describes the “source” Use Case used by the “target” Use Case

• Syntax matters!

– directed arrow indicates dependency

– stereotype <<uses>> classifies the kind of dependency

• Advantage: smaller models and discovery of possible reuse.
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<<uses>> — Example

Borrow copy of book: A BookBorrower presents a book. The system checks
that the potential borrower is a member of the library, and that s/he does not
already have the maximum number of books on loan. The maximum is 6 unless
the member is a staff member, in which case it is 12. If both checks succeed,
the system checks if the book is reserved (use case Check for reservation),
in which case the system refuses to lend the book. Otherwise it records that
this library member has a copy of the book on loan and prompts for the book
to be stamped with the return date.

Extend loan: A BookBorrower asks (in person or by telephone) to extend the
loan of a book. The system checks whether there is a reservation of the book
(use case Check for reservation. If so ...

Check for reservation: Given a copy of the book, the system searches the list
of outstanding reservations for reservations on this book. If it finds any, it
compares the number of them, n, with the number of copies m, known to be
on the reserved bookshelf. If n > m then the system returns that this copy is
reserved, otherwise that it is not.
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Exceptional behavior: <<extend>>

• Can be used to factor different behavior into a single scenario

<<extends>> Refuse loan

Borrow copy of book

BookBorrower

• Syntax: dashed arrow now from exception to main case!

• Scenario description explains:

Condition: when the exception holds
Extension Point: when the condition should be checked (optional)

Extension points:
too many loans

<<extends>> Refuse loan

BookBorrower

Borrow copy of book
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Generalization

• Generalization relates two actors or two Use Cases to each other

• Example: each JournalBorrower is a BookBorrower.

• Semantics: Every Bookborrower-Use Case holds for each
JournalBorrower.

• Specifies additional functionality. E.g., reservation generalizes
telephone-reservation

BookBorrower

JournalBorrower
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We will see more of this notation later

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

1 0..*

1 0..*

borrows/returns

borrows/returns

is a copy of
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Conclusion

• Use Cases models useful for initial requirements analysis

Question: What isn’t covered?

• Idea is simple, but effective in stimulating analysis and provides simple
structuring mechanisms

• Further extensions are possible:

Different icons for actors, interfaces, processes, ...

• Extensions show the spirit of UML, as well as advantages and disadvantages
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Overview

• We shall continue our study of semi-formal specification languages

• Today: UML class-diagrams

– Definition, motivation, application area

– Variants and extensions

• Goal: gain insight into a popular, semiformal modeling language and its
application to modeling static, structural aspects of systems
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Basic definitions and concepts

• In object oriented modeling, objects are the main unit of abstraction

– Used both for modeling requirements, design, and implementation

• In an object oriented model:

– Objects carry out activities

– Interface to objects is event oriented

– Example: A robot has sensors, actuators, control units, etc.

• Comparison: functional decomposition

– Decomposition of problem into functions (rather than activities)

– Interface is data-oriented (input/output of functions)

– Example: A compiler has a parser, code generator, . . .
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Definitions and concepts (cont.)

• One interacts with objects. An object has:

State: Encapsulated data. Consists of attributes or instance variables. Part of
the state can be mutable.

Behavior: An object reacts to messages by changing its state and generating
further messages.

Identity: An object is more than a set of values and methods. It has an
existence and a name.

• Def: An interface defines which messages an object can receive.

– Describes behavior without describing implementation or state

– Often one differentiates between public interfaces, which all objects can use,
and private interfaces, that (only) the object itself can use.

• An example: a watch interface (+ denotes public)

+ reportTime() : Time
+ resetTimeTo(newTime:Time)
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Definitions and concepts (cont.)

• A class describes objects with similar structure and behavior

class Point {
int x = 0, y = 0;
void move(int dx, int dy) x += dx; y += dy; }

• A class has a fixed interface and defines attributes and methods

• Advantages of classes

Conceptual: Many objects share similarities. E.g., the 10,000+ bank
customers

Implementation: Only one implementation
Further advantages: (to be presented later)

– Inheritance or overriding of methods
– Dynamic binding, where method implementations determined at run-time
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Today’s topic: Class diagrams

• Language to model the static view of a system

• A class diagram describes the kind of objects in a system and their different
static relationships.

• Kinds of relationships include

Associations: e.g., can a customer rent videos?
Subtypes: e.g. is a nurse a person?

• Central model of object oriented analysis with the largest applicability

• Generalizes other kinds of static modeling languages, e.g. E/R diagrams

A R B
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First an example
Order

Product

Customer
Corporate Personal

Customer

*

*

*

1

Constraint

Order Line

*

creditCard#

1

Employee

1

close()
dispatch()

dateReceived

number : String
price : Money

isPrepaid

Role
Name

line
items

{creditRating()==
     "poor"}

quantity : Integer
price : Money
isSatisfied : Boolean

name
address

{if Order.customer.creditRating is
"poor", then Order.isPrepaid must
be true}

contactName
creditRating
creditLimit

remind()
billForMonth(Integer)

Association creditRating():String

Customer

Generalization Class

sales rep 0..1

Operations

Attributes

Multiplicity 
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Reasons for using class diagrams

Conceptual: represents concepts in application domain.

Independent of an implementation.

Specification: Specifies interfaces and gives hints to the semantics.

Implementation: Describes what must be implemented.

• UML does not distinguish between these uses! Class diagrams may be
employed for different purposes.

• Example: in requirements modeling one omits many details. Decisions like
where state and behavior are localized, how one navigates between objects, etc.
are given later in development models.
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What are classes?

A class describes a set of objects with equivalent roles in a system. Examples:

Tangible, real-world things: Airplanes, computers, beer kegs, . . .

Roles: Library member, student, teacher, . . .

Business things: Orders, accounts, . . .

Application things: Power-on buttons, . . .

Data structures: Lists, hash-tables, . . .
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Visual representation of classes

• A class is represented as a square, with optional attributes and operations

Book

Book

title : String

copiesOnShelf() : Integer
borrow(c:Copy)

– Attributes define the state (data values) of the object
– Operations (or methods) define how objects effect each other

• One can also specify responsibilities

−− render the model on
     the screen

      and resizing the view
−− intercept user events

Model

Controller

      the model
−− manage the state of

Responsibilities

View

Responsibilities

Responsibilities
−− synchronize changes 
     in the model and views

−− manage movement 

Software Engineering Spring 2002



David Basin 10

Identifying classes

• What constitutes a good class model?

– The objects should satisfy the desired requirements

– Classes should represent significant classes of objects in the domain, in order
to improve maintainability and reusability

• How does one create a good class model? One possibility is:

Divine inspiration: When the result is good, everyone is happy!

• But classes have data and responsibilities. Other possibilities are:

Data driven design: Identify all system data and divide it into classes.
Afterwards consider operations.

Responsibility driven design: Start with the operations or even the
responsibilities (as in the last example).
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Procedure I: classes as nouns

• Two step procedure for identifying classes:

1. Identify possible classes. These are the nouns and noun-phrases used in the
requirements analysis. Use the singular.

2. Consolidate the results. Delete those whose name is
– redundant (one of many equivalent names)

– unclear (alternative: further clarify)

– an event or an operation (without state, behavior, and identity)

– a simple attribute

– outside of the system scope, e.g. a library system probably doesn’t require
a library class. Don’t forget, the objects are the system!

• Experience, imagination, and patience are helpful
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Brainstorming — example

name
price
location

Customer

phone
address
name

quantity
item

birthdate

id

Product

Warehouse

Transaction

actions

commit()
rollBack()
wasSuccessful()

Responsibilities
−− maintain the information
      regarding products shipped
      against an order
−− track the status and location
      of the shipped products

Order

invoice

Shipment
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Procedure II: CRC Cards

• Alternative approach suggested by Beck & Cunningham 1989 (pre-UML)

• For each class one notes on a card:

Class: Name
Responsibilities: of objects of the class
Collaborators: helpers that aid in fulfilling the responsibilities

• If there are too many responsibilities or collaborators, create new classes!

• Distribute the card to the developing team and choose a Use Case scenario

– Play the scenario through, switching, as necessary, between the collaborators

– In doing so, discover missing responsibilities or collaborators

• Afterwards, add attributes and methods
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Brainstorming with CRC-Karten

LibraryMember
Responsibilities Collaborators
Maintain data about copies currently borrowed
Meet requests to borrow and return copies Copy

Copy
Responsibilities Collaborators
Maintain data about a particular book copy
Inform corresponding Book when borrowed and returned Book

Book
Responsibilities Collaborators
Maintain data about one book
Know whether there are borrowable copies
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Relations

• Objects of a class collaborate with objects of other classes. Example: a house

Classes: walls, doors, windows, lights, ...
Structural relationships: Walls adjoin other walls. Doors are built into walls,

etc.
Other relationships: Different kinds of windows. E.g., some can not be

opened, others having single glass, others double, etc.

• UML supports modeling different relationships between objects or classes

Relationship Function Notation

Association Describes connection between instances of classes

Generalization A relationship between a more general description

and a more specific variety

Dependency A relationship between two model elements

Realization Relationship between a specification and its implementation

Usage Situation where one element requires another for proper functioning

Associations describe relationships between objects in a class. The others
describe relationships between classes (or interfaces), instead of their instances.
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Associations

• Relates objects and other instances of a system

• Semantics: a relation like E/R models

BookCopy
is a copy of

• Examples:

– Fred borrows copy 17 of Book XYZ

– An object of class A sends a message to an object of class B

– An object of class A creates an object of class B
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Associations can be annotated

Name: e.g. is a copy of

Multiplicity: a number n, or a range n..m, or an arbitrary number ∗

Student Moduleis taking

1..* 6

– Each student takes 6 courses and each course has at least one student.

– Semantics: constrains the relation

Navigation: a line can be directed with an arrow

Student Moduleis taking

1..* 6

– Module objects can send students messages, but not vice versa.

– Semantics: relation can be queried in only one direction

One can omit details in the early modeling phases. The result is then ambiguous.
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Annotation (cont.)

Role: describes the roles played by objects in the association

Person Company
employee employer

– Makes relationships easier to read and understand

– No semantic consequences

Directed names: describes the direction that a name should be read

Person Company
Works for

– Independent of navigation (direction)

– Also no semantic consequences
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Associations: aggregation and composition

Notational support for certain kinds of frequently occurring associations

Aggregation: whole-parts relation

Company Department
1 *

• Diamond marks the “whole”
• Typically no name. Implicitly “is a part of”

Composition: aggregation where the “part” has no independent existence

Board Square
9

1

When the “whole” is deleted, so are the parts
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An example

Course Instructor

chairperson
1

Student
attends

1..*
teaches

* * * 1..*

1..*

assignedTomember

Department
0..1

School
1..*

has

1..*
1..*1..*1
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Association classes

• An association can itself have properties

• An association class models things with both association and class properties

Student Moduleis taking

is taking

mark : int

1..* 6

• An association class can be replaced with multiple associations

Student Moduleis taking

mark : int

Mark

1 1

6 1..*

61..*

Question: What is the semantics of these diagrams? Are the two equivalent?
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Object constraints

• Associations correspond to relations, i.e., sets of tuples.

Copy
is a copy of

Book

Journal

is a copy of

0..1

0..1

1..*

1..*

• One can introduce constraints to tighten the semantics (i.e., remove tuples)

Copy
is a copy of

Book

Journal

is a copy of

0..1

0..1

1..*

1..*
{xor}

• UML offers an extension, OCL, where constraints are given by logical formula

We will later consider an alternative, the formal language Z
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Generalization

• Relation between a general thing (superclass) and a specific thing (subclass).
Sometimes called is-a.

• Example: figures

move()
resize()

Shape

display()

origin

Rectangle

corner: Point

Circle

radius:Float

Polygon

points:List

Square

• Semantically: an object of a subclass can be substituted for a superclass object
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Generalization — abstract classes

presentValue()
history()

SmallCapStock LargeCapStock

Security

interestRate

presentValue()

Stock

presentValue()

Bond

presentValue()
presentValue()

assessments

PropertyCashAccount
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Conclusion

• Class diagrams support the modeling static, structural relationships

• Central concept of OO-modeling and design!

• UML offers even more (parameterization, visibility, qualifiers, etc.)

=⇒ topics for a specialized course

• Case-studies in more detail later
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Overview

• Dynamic modeling: within and between objects

• Introduction to different kinds of models

Statecharts: state oriented; both within and between
Activity diagrams: state oriented; emphasizes coordination between objects
Sequence diagrams: Information flow (messages) between objects

• Applications
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Dynamic modeling — state oriented

• Model dynamic aspects of systems: control and synchronization

– What are the states of the system?

– Which events does the system react to?

– Which transitions are possible?

– When are activities (functions) started and stopped?

• Example: When the left mouse button is pressed, an option menu appears

• Such models correspond to transition systems 〈Σ,Q , δ〉

Also called state machines or (an extended variant of) automata
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State machine modeling

• Machines specify system states and control flow

Power

Full Power

powerIdle

Half power on

Set time

Operation disable

Operation enable

Cooking Complete

Idle

Half Power

Half Full

Timer Timer

Timer Door open

Door closed

Door closed

Door open

Timeout

Start
Ring Bell

Timed operation

Full power on

• State ; system function transition ; event
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State machine modeling (cont.)

States and transitions must be explained (semantics):

States:

State Description
Half Power On Power is 300 Watt
Full Power On Power is 600 Watt
Set Time Timer turned on
... ...

Transitions/Events:

Event Description
Half Power ‘Half Power’ button pressed
Full Power ‘Full Power’ button pressed
Timer ‘Timer’-knob turned
... ...
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Statecharts

• Ordinary state machines have several weaknesses:

No hierarchy: flat state space
– Hierarcy is conceptually useful
– Supports development using iterated refinement

No parallelism: Machines are combined via product construction
– Conceptually inadequate
– Not possible in practice without tool support

• Example: Electronic watch

• Statechart extension (Harel 1987) solves this problem and supports models
where time and reactivity can be modeled
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A simple example

• Statecharts explain how and when an object reacts

• Example: Borrowing a book =⇒ statechart for Copy

return()

borrow()

on loan on the shelf

– Syntactic entities: states, transitions, events, stop symbol and start symbol

– State depends on the attribute variable on the shelf

– Interface supplies borrow and return methods

– Partial specification: model specifies what happens in a particular state.
Extension with error/exception states is possible

– Note abstraction: the copy object can have other attributes (e.g., ISBN
number, etc.). These play no role here.
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Actions

• Transitions can specify actions

on loan on the shelf
return()/book.returned(self)

borrow()/book.borrowed(self)

– Syntax: E/A where E is an event and A an action
– An action is what an object does, e.g., send a message
– Here the Copy object sends a message to the Book object

• States can also specify actions:

return()

borrow()

on loan on the shelf

entry/book.borrowed(self) entry/book.returned(self)

return()

borrow()

on loan on the shelf

exit/book.returned(self) exit/book.borrowed(self)

– Entry/Exit: action possible (also in combination with transition actions)
– Both examples have the same meaning
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Semantics can be important

exit/baz() entry/foo()

someEventaState anotherState/bar()

Question: In which sequence do the actions occur?

Software Engineering Spring 2002



David Basin 9

Actions with constraints

• Guards are used to restrict transitions

not borrowable borrowable
returned()

borrowed()[ last copy]

returned()

borrowed()[not last copy]

• A guard is a Boolean expression

• UML is open (= vague) concerning precise syntax

Can be (precise, natural) language, OCL, or a programming language
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What does a statechart mean?

• Semantics as a transition system

S1 S2

E[C]/A

• Transition occurs when

– System is in S1

– Event E occurred in the last step

– Condition C holds

• Events immediately follow

• A formal semantics (with time) is actually rather subtle!
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Hierarchy

• States are tree structured:

D E

B

A

C

• System is in a ground state and in all parent states

• “Higher-level”-transitions have priority over “lower-level”-transitions

V

T

S

U

E/BG/A

G

E

F −→

T

S

U

E

F

G

F

E and not F/BG and not F/A
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Parallelism

• OR-states: System in at most one state of current level

• AND-states: Simultaneously in all states of current level =⇒ parallelism

T

U

V

H I

S

Y

X

Z

E

F

G

T

U

V

S

Y

X

Z

H I

E

F

G

−→

UX VX

UY

UZ

VY

VZ

I

H

I

H

I

H

E

F

G

E

F

G

G and HG and I

F and I

E and I E and H

F and H
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Parallism complicates semantics

S1

/N:=N+1

/X:=N

S1

/N:=N+1

/X:=N

S1 S2E/X:=1;

S3 S4 S5/X:=X+1/X:=5

S1 S2

S3 S4 S5

E/X:=1;

/X:=X+1/X:=5
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Default connector

−→
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History connector

S

T

U V

H

−→
T

U V

S

SU SV

Describes which state was last active
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Switch connector

S

T

U

E/A

G/C

F/B

S −→ S

T

U

E and F/A;B

E and G/A;C
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Example #1: simple environment controller

Temperature drop or rise/
adjustTemperature()

Temperature drop or rise/
adjustTemperature()

Sunset/
Lightoff()

Sunrise/
Lighton()

Terminate
climate

Define
climate

DaytimeIdle

Nighttime

– Controls light and temperature

– Natural language specification of events
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Example #2: climate controller

entry/startUp()
exit/shutDown()

entry/startAlarm()
exit/stopAlarm()

Too cool
[restart time
>= 5 minutes]

Compressor
running

Failure

Failure

Fan running
Failure

Idle

Heating

Running

Ready

Startup
Cooling

Ok

Too hotOk

Failure cleared
        

Demonstrates nested states and logical conditions
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Example #3: climate controller with error handling

Create
log

Log
ready

Too cool
[restart time
>= 5 minutes]

Compressor
running

entry/startUp()
exit/shutDown()

Failure cleared

Ok

Fan running

Failure
Logged

Failure

Posted

Post

Start up

Ready

Running

Cooling
Too hotOk

Failure

Heating

Idle

Created

H

– History connector used to create log only once

– Semantics subtle: interaction between Failure cleared und Post
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Activity Diagrams

• A (simple) alternative to statecharts

– Emphasizes synchronization within and between objects

• An example: work in a library

prepare for
next member

find book on shelf

wait in queue

borrowing

record

record
return

put book back
on shelf

[borrower]

[returner]

[returning]

[borrowing]

member librarian
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Syntax/Semantics

• Syntax:

Activity: a kind of state, left when the activity is finished
Transition: normally not labeled, since the event is the end of an activity
Synchronization bars: describes synchronization points
Decision diamonds: shows decisions, alternative to guards
Start und end markers: like in statecharts
Swimlanes: shows which object carries out which activity

• Semantics: More-or-less intuitive. Can be translated into statecharts
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Sequence diagrams

• UML offers two (slightly different) kinds of diagrams to model interaction

– Sequence diagrams and interaction diagrams

– We only consider the first here

• Shows how objects iteract in execution scenarios by exchanging messages

– Works well with CRC-card modeling: shows how responsibilities fulfilled
through collaboration

– Describes also temporal aspects of object behavior and (optionally) object
life-time in a scenario
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Example: book loan scenario

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

aMember : BookBorrower

• Syntax

Name of objects (instead of classes!)
Lifeline of the object with activation rectangle
Arrows that indicate message passing; further annotation possible

• Restrictions

– Branching points possible, but difficult; one scenario at a time is standard
– No support for hierarchy
– No liveness; one only specifies what can happen, not what must happen
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Sequence diagrams — extensions

• Creation and deletion of objects

:Lecturer

:DirectorOfStudies

:UTO
1: n := getName()

2: new DirectorOfStudies (n)

3:destroy()

• Constraints (here timing)

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

1: okToBorrow

2: borrow
2.1: borrowed

A

B

B’

{C - A < 5 sec}

C

aMember : BookBorrower

• Other extensions supported like annotation for multi-threaded applications
(e.g., thread numbering, special arrow for asynchronous message passing, etc.)
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Conclusion

• Systems have both static and dynamic aspects

• Dynamics can be viewed/modeled in different ways E.g., focusing on state state
versus communication

• Diagrams can be combined to give “fuller” system model

=⇒ we will see an example shortly!
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Overview

• We will study two examples of using UML diagrams to model systems

– Class administration program

– A simulation program

• Shows integration of diagrams in the modeling process

• Disclaimer: 30 minute case studies are (over)simplifications.
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Example 1: Class Administration Program

• Project: System to administer the 4th year of a computer science class.

• The Status Quo is as follows:

– In summer, a committee decides which course modules are offered in winter semester (CS4).

– The dean makes the teaching assignments.

– Each teacher creates a course description and sends it to the CS4-coordinator.

– Someone in the “Undergraduate Teaching Office” (UTO) produces a version of the course
handbook. The CS4-coordinator produces a HTML version with latex2html.

– The CS3-coordinator sends a student list to the CS4-coordinator and UTO.

– Each student has a supervisor that functions as “Director of Studies” (DoS). This assignment
is made in the first year.

– Students register for modules, the UTO checks validity, and the DoS is consulted in borderline
cases.

– The UTO produces a lecture-participation list for each lecturer.

– Changes, administration of grades, ...
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Problem 1 (cont.)

These requirements are imprecise. Further analysis is needed to understand them.

• Are students only CS-students?

• What must additionally be updated? (Web pages, ...)

• What is a course handbook? How many of them are there?

• What constitutes a valid module combination? In some Universities, one must
take advanced “honors courses”, etc.
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Problem 1 (cont.)

• Desired: an improvement of the Status Quo!

– Less work for everyone, including the coordinator.

– On-line registration for teaching modules.

– On-line information.

– Support or automation of the production of teaching material (course
handbooks) and lists.

• Let’s consider part of the requirements:

(We leave queries out — standard support from database system)

• Use Cases are

– Production of course handbooks

– Administration from CS4-lists

– Registration for modules
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A Possible Use Case Model

CS3CourseOrganiser
CS4CourseOrganiser

UTO

CS4Student

CS4DirectorOfStudies

CS4Lecturer

Create CS4 list

Produce
course handbook

Register for
modules

Produce Course Handbook: This use case takes place after the syllabus committee has determined the set of

available modules and the department head has allocated duties to lecturers.

The CS4 course organizer updates the core (module-independent) sections of each course handbook by getting

the current text from the system, modifying it, and returning the modified version to the system.

The lecturer of each module, similarly, updates the module descriptions by getting the text from the system,

updating it, and returning it.

The updates can happen in any order. When the updates are complete, the system sends a complete text of the

handbook by email to the UTO, who prints it and updates the web pages.
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Brainstorming with CRC Cards

• Example: CRC cards for “Produce Course Handbook”

Class name:

CollaboratorsResponsibilities

Class name:

CollaboratorsResponsibilities

Class name:

CollaboratorsResponsibilities

Module

HonoursCourse

Keep collection of
modules

Module

DirectorOfStudies

Provide human DoSs’
interface to the system

Generate course
handbook text

Keep description of
course

Keep Lecturer of course

• Basis for class diagram and scenario simulation.
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Class Diagram

• First version here. Should be refined later.

Lecturer

Module

HonoursCourseStudent

GraduatingStudent

DirectorOfStudies

NonGraduatingStudent

teaches

takes

directs

is on

6

1..* 1..*

6..*

1

0..*

0..*

1

1

0..*

• Questions: Which of the following statements are consistent with this model?

– Not all lecturers teach some CS4-Module.
– Not every DoS is a CS4-lecturer.
– All students must take an honors course.
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Dynamic Modeling

• State-charts: No classes with interesting state transitions.

Data modelling plays the largest role in design. Behavior is relatively simple.

• Activity diagrams can be used to model Work Flow, e.g., task synchronization
and dependencies.

Determine
modules

Allocate
duties

Update
module entry

Update
core sections

Print
handbook

Generate
HTML version

syllabus
committee

head of
department

lecturer

UTO CS4 course organiser
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Example 2: A Simulations Program

• Project: Develop an integrated modeling environment to support discrete
event simulation.

Support the development of simulation models (e.g., a specialized CASE-tool)
and their simulation.

• Based on a process oriented view of simulation.

• Simulation should both report on events (system traces) and provide statistical
summary information.
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A Detailed Description (potential classes in red)

System users are developers who build simulation models and check that they run without
error and experimenters who run them and collection statics about what happens.

Entities modeled are active entities and passive entities. Active entities represent things
that carry out activities, like workers in a factory. When a real-life worker does something
that affects other real-life things, the active entity modeling that worker causes a simulated
event which affects those entities that model those things.

Passive entities are resources, semaphores, and buffers. Although inactive, they affect
the behavior of active entities, e.g., a process with insufficient resources blocks. Passive
entities also report information on their state over time.

The behavior of an active entity is determined by a sequence of events to be simulated.
At any point in the simulation, an active entity is in one of three states.

1. Active, where it responds to an event. Only one active entity can be in this state at a
time and its event time defines the current simulated time.

2. Blocked, waiting for a request to be satisfied by a passive entity.

3. Waiting for simulated time to reach this object’s next event time.
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Description (cont.)

Simulated events arise as messages either from a scheduler or from a passive entity whose
state has changed. Simulated events should send messages to a trace file so that an
experimenter can follow the internal behavior of the model.

Statistics are collected by updating information about passive entities and other values
for which information is needed. Examples of values being monitored and their derived
statics are counts of how many times something occurs and the average value over time
of something like a queue’s length.

The conditions under which a model executes are varied to observe how the system would
respond. The values varied are read from an external data set, which is set up before the
model is run.
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Use Case Model

collect statistics

Developer

<<extends>>

<<uses>>

create model

run a model

<<uses>>

observe behaviour

Experimenter
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Use Cases (cont.)

create model: Developer creates an initial model by interacting with editing functions of the
tool. He then creates a dataset and checks the model by following the behavior defined in
the run a model use case. If there are errors, he modifies the model and runs it again.

observe behavior: Experimenter selects a model, created earlier (see create model). He selects
or creates a dataset which determines conditions such as resources and durations of variable
delays. He then follows the behavior in the run a model use case and, when the model has
run, reads the trace generated.

collect statistics: Before using the run a model use case, the Experimenter sets a flag
indicating that statistics should be collected and reported by writing them to a file at the
end of the run.

run a model: This use case assumes a model/dataset has been selected. The actor starts the
model, which consists of instances of objects used to model and observe the system. Each
active entity sets itself to an initial simulated event time and to an initial next simulated
event, which it reads from the dataset. Each passive entity reads its initial settings from the
same dataset.

The entities act out behavior specified by the description of each active entity’s life cycle,
under the control of the scheduler, which ensures that events occur in the order of their
simulated time. Passive entities ensure that constraints are respected. . . .
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Class Diagram

Version I (rough):
Scheduler

schedules

1..*

1

1..*

ExternalDataset

1
driven by

Report

AverageCount

PassiveEntity

BufferResource

1..*

invokes

1

1..*

asks summary from

1

1

makes requests to

1

updates

1
asks time from

1

0..*

set by

1

1..*

1

ActiveEntity

{abstract}

{abstract}

Statistic

N.B.: ActiveEntity is abstract since the developer provide a concrete realization
(through subclassing). Statistic also abstract, although two instances are provided.
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Class Diagram (cont.)

• Version I can be refined to come closer to an implementation.

We specify associations, attributes, methods. E.g.,

• Scheduler invokes Report

Direction: One way, from Scheduler to Report.
Meaning: The Scheduler has the possibility of receiving statistics from

Report-Objects, at the end of a simulation.
Implementation: The Collection Attribute reports in the Scheduler, and the

operation report() in Report

• Scheduler schedules ActiveEntity

Direction: Two way: each Scheduler must be able to activate and
ActiveEntity, and each ActiveEntity requires the Scheduler, in order to be
entered in the event list.

Meaning: The Scheduler controls the sequence in which ActiveEntities are
executed, guaranteeing that execution occurs in the correct order.

Implementation: . . .
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Refined Class Diagram

ExternalDataset

+ giveValue() : Real

- evList: TimeOrderedList
- reports: Collection

Report

1..* - stats: Collection
+ report()

Resource

invokes

Scheduler

1..*

1

PassiveEntity

1

# myStat : Statistic
# blocked : FIFOList

+ wait(a : ActiveEntity)
+ now() : Real

- avail : Boolean

+ acquire(a:ActiveEntity)
+ release()

1

1
set by

0..*

asks time from

driven by
1

1..*

+trace(m : Text)
+ reschedule()

+ getTime() : Real

makes
requests to

updates

1
1

# input : ExternalDataset

ActiveEntity
{abstract}

- total : Integer

Count

+ update(r:Real)
+ update(r:Real)

+ report()

- sum : Real

Average

+ report()

1

schedules

1..*

+ run(runTime:Real)

# input : ExternalDataset
# s : Scheduler

# evTime : Real
# nextEvent : Integer

Buffer

+ reset()
+ reset()

+ report()

1
asks for summary from

0..*
1..*

{abstract}
# observations : Integer
# clock : Scheduler
# startTime : Real
+ reset()
+ update(r:Real)

+ act()

Statistic
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One class in detail — ActiveEntity

• Abstract Class: No operation for act(). Can only be used after generalization.

• Attributes are protected. Can be used in subclasses.

• State/behavior:

in event list
[nextEvent=Finished]do / activeDetail

active

[not nextEvent=Finished]s.wait(self)

act()

– One begins in the state in event list, i.e., one waits in evList of the
Schedulers. A transition occurs when the object receives an act()-message,

– Upon leaving the state active, the object either terminates or sends itself to
the Scheduler in the form of a wait-message.

– ActiveEntity has a nested state machine named activeDetail, which specifies
specialized details from active. In each specialization of ActiveEntity, the
Developer must later define activeDetail.
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Another Class — Average

• Specializes the abstract class Statistic

• 3 Methods. Meaning can be fixed with a state-chart.

reset() / sum := 0 / observations := 0

report() / printSummary() / sum := 0 /observations := 0

entry / startTime := now()

update(val : Real) / sum := sum + val/observations++
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Summary

• Models yield different views of a system at different levels of abstraction.

• Models compliment textual documentation.

• Useful for planning, development, etc. ...

• Iterating brain-storming/diagrams/discussions is helpful in building models and
improving general problem understanding.

• Building models is a skill that must be acquired through practice!

We have not shown any false starts here.
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Overview

• Today:

– Modeling with formal languages: why and how?
– A standard introductory example.
– The Z language — first definitions.

• Next classes: Z in detail, the mathematical toolkit, and applications.
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Modeling

System and

Software Design

Implementation and

Unit Testing

Integration and

System Testing

Operation and

Maintenance

Requirements
   Definition

• Goal: specify the requirements as far as possible, but abstract as possible.

• Definition: A model is a construction or mathematical object that describes a
system or its properties.
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Which Modeling Language?

• There are hundreds! Differences include:

System view: static, dynamic, functional, object-oriented,...
Degree of abstraction: e.g. requirements versus system architecture.
Formality: informal, semi-formal, formal.
Religion: OO-school (OOA/OOD, OMT, Fusion, UML), algebraic

specification, Oxford Z/CSP-Sect, Church of HOL,...

• Examples:

Function trees, data-flow diagrams, E/R diagrams, syntax diagrams, data
dictionaries, pseudo-code, rules, decision tables, (variants of) automata,
Petri-nets, class diagrams, CRC-cards, message sequence charts,...

• Why are UML or other semi-formal languages not enough?
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Disadvantages of Semi-Formal Languages

• Modeling is detailed and intuitive (and ”simple”, i.e. also for managers and
laymen).

• Semantics of models/diagrams is often imprecise.

• Often only syntax.
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Example: Problems with E/R-Diagrams

(scheduling variant)

n

n

n

1

1

1 1

1

1

      in

1

m

Name

1n

n

Day

Instructor

Begin

Duration

Title
Rank

DayBeginDuration contains

participates

contains contains

contains

contains

contains

Additional Information

RequirementsType

CapacityRoomID

ClassScheduleCSID

ExpectedAttendants

ResearchGroup

EventOfferID

EventOffer EventAssignment

RoomOffer

Features

PreferredDayBeginDurations

• Are the relations ”directed”?

• Several properties cannot be specified graphically (e.g. constraints).

• etc.

We will employ Z to formalize semi-formal diagrams and models.
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Formal Languages

• A language is formal if its syntax and semantics are defined formally
(mathematically).

• Formal languages allow for the design, the development, the verification, the
testing and the maintenance of a system:

– remove ambiguities and introduce precision,
– structure information at an appropriate abstraction level,
– support the verification of design properties,
– are supported by tools and systems.

• Using mathematics (and formal methods) may appear to be expensive, but in
the long run it pays off (and how!).
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Z (“zed”)

• Is a very expressive formal language.

• Based on first-order logic with equality (PL1=) and typed set-theory.

• Has a mathematical toolkit: a library of mathematical definitions and abstract
data-types (sets, lists, bags, ...).

• Supports the structured modeling of a system, both static and dynamic:

– modeling/specification of data of the system,
– functional description of the system (state transitions).

• Is supported by several tools and systems.
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Z and other Formal Languages/Methods

• A number of successfully employed Formal Methods are based on PL1= with
type-theory, e.g.

– VDM (“Vienna Development Method”, 80’s),
– B (applied extensively in France).

• Other formal languages:

– Equational logic or Horn logic (in algebraic specifications),
– PL1=,
– Higher-order logic (HOL).

• Z:

– Applied successfully since 1989 (Oxford University Computing Laboratory),
e.g. British government requires Z-specifications for security-critical systems.

– Is (will soon be) an ISO standard.
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An Example (1)

A mathematical model that describes the intended behavior of a system is a
formal specification.

Q: Why do we need such a specification if we can simply write a program?
Why not directly implement the program?

A: A program can be quite cryptic, and therefore we need a specification that
describes formally the intended behavior at the appropriate abstraction level.
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An Example (2)

Example: What does the following simple SML-program do?

fun int_root a =
(* integer square root *)

let val i = ref(0);
val k = ref(1);
val sum = ref(1);

in while (!sum <= a) do
(k := !k+2;
sum := !sum + !k;
i := !i+1);

!i
end;
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An Example (3)

• The program is efficient, short and well-structured.

• The program name and the comment suggest that int_root simply computes
the ”integer square root” of the input, but is it really the case?

• Moreover: What happens in special input cases, e.g. when the input is 0 or -3?

• Such questions can be answered by code-review (or reverse-engineering), but
this requires time and can be problematic for longer programs.

• The key is abstraction: understanding the code must be separated from
understanding its “function”.

For example, consider a VCR whose only documentation is the blue-print of its
electronic.
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A Example (4)

• Solution: we can specify the program in Z.

Formalize what the system must do without specifying/prescribing how.

• We specify int_root in Z by means of a so-called axiomatic definition (or
axiomatic description):

int root : Z→ N

∀ a : N • let y = int root(a) •
y ∗ y ≤ a < (y + 1) ∗ (y + 1)

∀ a : N \ {0} • int root(−a) = 0

declaration

predicate
...
predicate

More about Z  implementation in a few weeks.
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An Introductory Example: The Birthdaybook

• The Birthdaybook is a small database containing peoples’ names and their
birthdays.

• A simple event-model:

FindBirthday

BirthdayBook

AddBirthday

Remind
Init

• A structured Z-specification in 3 steps:

1. Define the (auxiliary) functions and types of the system.
2. Define the state-space of the system.
3. Define the operations of the system (based on the relations of the

state-space).
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The Birthdaybook: Z-Specification (1)

Step 1. Define the (auxiliary) functions and types of the system:

• Basic types

[NAME ,DATE ]

The precise form of names and dates is not important (e.g. strings, 06/03,
03/06, 6.3, 06.03, March 6, 6.Mar, or ...).
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The Birthdaybook: Z-Specification (2)

Step 2. Define the state-space of the system using a Z-schema:

Birthdaybook
known : P NAME
birthday : NAME 7→ DATE

known = dom birthday

Name of schema
declaration of typed variables

(represent observations of the state)

relationships between values of vars

(are true in all states of the system

and are maintained by every

operation on it)

Notation and remarks:

• known is the set (symbol P) of names with stored birthdays,

• birthday is a partial function (symbol 7→), which maps some names to the
corresponding birthdays,

• The relation between known and birthday is the invariant of the system:

the set known corresponds to the domain (dom) of the function birthday.
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The Birthdaybook: Z-Specification (3)

• Example of a possible state of the system:

known = {Susy, Mike, John}
birthday = {John 7→ 25.Mar ,

Susy 7→ 20.Dec ,
Mike 7→ 20.Dec}

• Invariant known = dom birthday is satisfied:

– birthday stores a date for exactly the three names in known.

• N.B.:

– no limit on stored birthdays,
– no particular (prescribed) order of the entries,
– each person has only one birthday (birthday is a function),
– two persons can have the same birthday.
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The Birthdaybook: Z-Specification (4)

Step 3. Define the operations of the system (based on the relations of the
state-space).

• Some operations modify the state and some leave it unchanged.

• Some operations have input and/or output:

in? out!System

• Examples of operations: AddBirthday, FindBirthday, Remind (and Init).

FindBirthday

BirthdayBook

AddBirthday

Remind
Init
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The Birthdaybook: Z-Specification (5)

Add the birthday of a person, who is not yet known to the system:

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ =

birthday ∪ {name? 7→ date?}

Name of operation (schema)
structured import (symbol ∆)

input of operation (symbol ?)

input of operation (symbol ?)

precondition for success of operation

extend the birthday function

(if precondition is satisfied)

• This schema modifies the state:

– it describes the state before (variables without ’),
– and that after the operation (variables with ’).

• Note that we do not specify what happens when the precondition is not
satisfied.

• It is possible to extend (refine) the specification so that an error message is
generated.
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The Birthdaybook: Z-Specification (6)

• We expect that AddBirthday extends the set of known names with the new
name:

known ′ = known ∪ {name?}

• We can use the specification of AddBirthday to prove this, by exploiting the
invariant of the state before and after the operation:

known ′ = dom birthday ′ [invariant after]
= dom(birthday ∪ {name? 7→ date?}) [spec of Addbirthday ]
= (dom birthday) ∪ (dom{name? 7→ date?}) [fact about dom ]
= (dom birthday) ∪ {name?} [fact about dom ]
= known ∪ {name?} [invariant before]

• Proving such properties ensures that the specification is correct:

We can analyze the behavior of the system without having to implement it!
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The Birthdaybook: Z-Specification (7)
Find the birthday of a person known to the system:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

Name of operation (schema)
structured import (symbol Ξ)

input of operation (symbol ?)

output of operation (symbol !)

precondition for success of operation

output of operation (if successfull)

This schema leaves the state unchanged and is equivalent to:

FindBirthday
∆BirthdayBook
name? : NAME
date! : DATE

known ′ = known
birthday ′ = birthday
name? ∈ known
date! = birthday(name?)
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The Birthdaybook: Z-Specification (8)

• Find out who has his birthday at some particular date:

Remind
ΞBirthdayBook
today? : DATE
cards! : P NAME

cards! = {n ∈ known | birthday(n) = today? }

cards! is a set of names, to whom ”birthday-cards” should be sent.

• Initial state of the system:

InitBirthdayBook
BirthdayBook

known = ∅

known = ∅ implies birthday is also empty.
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The Birthdaybook: Z-Specification (9)

• What does the Z-specification tell us about the implementation?

• It describes what the system does without specifying/prescribing how.

• For example, the Z-specification identifies legal and illegal data and operations.
Illegal operations are for instance:

– simultaneous addition of the birthdays of two persons,
– addition of the birthday of a person who is already known to the system

(name? ∈ known).
An operation ChangeBirthday is not specified and could be added, or only
realized in the implementation.

• More in the next classes.
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Summary

• Z is an expressive language (PL1= and typed set-theory).

• Z supports structured, static and dynamic, modeling.

• More about Z:

http://archive.comlab.ox.ac.uk/z.html

• Tools and systems: see the course webpage.

– ZETA (an open environment, including a type-checker; emacs Zeta-Mode)
/usr/local/zeta

– HOL-Z tool (an embedding of Z in the theorem prover Isabelle).
– Object-Z (an object-oriented extension of Z).
– Books about Z and LaTeX style-file.

Software Engineering Spring 2002

http://archive.comlab.ox.ac.uk/z.html
/usr/local/zeta


Formal Modeling with Z: Part II

Luca Viganò
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What Z is...

• Z is based on:

– first-order logic with equality (PL1=)
– typed set-theory

• Z supports the structured modeling of a system at an appropriate abstraction
level, both static and dynamic, i.e.

– formal modeling/specification of the data of a system,
– functional modeling of the system (state transitions).

• Z allows one also to model and verify the refinement of a design:

– Model a system by means of simple mathematical data-types.
– Refinement of the model, based on the design-decisions, and that is closer to

an implementation.
– Refinement process can be iterated up to executable code.
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...and what Z is not

• Z not intended for the modeling of:

– non-functional properties such as usability, efficiency, reliability, etc.
– temporal or concurrent behavior.

• Other methods, which can be used in combination with Z, are better suited for
such modeling.
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Overview

• The Z Language and The Mathematical Toolkit.

– A semantic library is defined on top of the “basis language”.

• Next classes: Applications.
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Main Components: Expressions and Predicates

• A small kernel, which we extend to the Z mathematical toolkit.

• Expressions E and predicates P :

E ::= cx | vx [constants, variables]

| E E [application]

| (E , . . . ,E ) [cartesian product]

| {v1 : E ; . . . ; vn : E | P • E} [comprehension]

| 〈| tag1  E , . . . , tagn  E |〉 [tagged records (bindings)]

| E .tag [element selection in record]

P ::= true | false | cx(E , . . . ,E )

| ¬ P | P ∧ P | P ∨ P | P ⇒ P | P ⇔ P

| ∀ x : S • P | ∃ x : S • P [∀ declaration • predicate]
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Typed Set-Theory (1)

A brief overview of typed set-theory
(what is needed for the specification, refinement, and verification in Z).

• A set is a (well-defined) collection of objects.

• Small sets can be defined by extension:

Oceans == {atlantic, arctic, indian, pacific}

SEinstructors == {Basin,Vigano‘,Wolff }

• Notation: n is a (new) name for the expression e

n == e
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Typed Set-Theory (2)

• Notation and some axioms

– Sets S and T are equal iff they have the same elements:

S = T iff (∀ x : S • x ∈ T ) and (∀ x : T • x ∈ S )

provided that x does not occur free in S or in T .

– Expression e belongs to a set defined by extension iff it is equal to one of the
elements of the set:

e = u1 ∨ . . . ∨ e = un iff e ∈ {u1, . . . , un}

⇒ Order and occurrence (frequency) of the elements is not important.
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Set-Comprehension (Typed Set-Theory, 3)

• Comprehension: given a non-empty set S , it is possible to define a new set by
considering only the elements of S that satisfy some property p:

{x : S | p} e.g.: {i : Z | i ≥ 0} or {x : SEinstructors | x ∈ profs}

• In general:

{x : S ; y : T | p • e} {declaration | predicate • expression}

– The value of {x : S ; y : T | p • e} is the set of values of the expression e
when the variables in the declaration take all the values that satisfy the
predicate p. (Also: {source | filter • pattern}.)

– E.g.: {x : Person; y : Class | (x ∈ profs) ∧ (teaches(x , y)) • phone(x )}

• p and e are both optional:

{x : S | p} = {x : S | p • x} and {x : S • e} = {x : S | true • e}
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Set-Comprehension (Typed Set-Theory, 3.1)

{source | filter • pattern}

• A detailed example: “evaluation” of {i : N | (i > 4) • (2 ∗ i) + 1}
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Set-Comprehension (Typed Set-Theory, 3.1)

{source | filter • pattern}

• A detailed example: “evaluation” of {i : N | (i > 4) • (2 ∗ i) + 1}
Source (i.e. declaration) is the set of natural numbers:

{i : N} = {0, 1, 2, 3, 4, 5, 6, 7, 8, . . .}
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Set-Comprehension (Typed Set-Theory, 3.1)

{source | filter • pattern}

• A detailed example: “evaluation” of {i : N | (i > 4) • (2 ∗ i) + 1}
Source (i.e. declaration) is the set of natural numbers:

{i : N} = {0, 1, 2, 3, 4, 5, 6, 7, 8, . . .}

We add the filter (i.e. predicate), i.e. only elements bigger than 4:

{i : N | (i > 4)} = {5, 6, 7, 8, . . .}
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Set-Comprehension (Typed Set-Theory, 3.1)

{source | filter • pattern}

• A detailed example: “evaluation” of {i : N | (i > 4) • (2 ∗ i) + 1}
Source (i.e. declaration) is the set of natural numbers:

{i : N} = {0, 1, 2, 3, 4, 5, 6, 7, 8, . . .}

We add the filter (i.e. predicate), i.e. only elements bigger than 4:

{i : N | (i > 4)} = {5, 6, 7, 8, . . .}

Then we add the pattern (i.e. expression), and obtain the transformed
elements:

{i : N | (i > 4) • (2 ∗ i) + 1} = {11, 13, 15, 17, . . .}
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Set-Comprehension (Typed Set-Theory, 3.1)

{source | filter • pattern}

• A detailed example: “evaluation” of {i : N | (i > 4) • (2 ∗ i) + 1}
Source (i.e. declaration) is the set of natural numbers:

{i : N} = {0, 1, 2, 3, 4, 5, 6, 7, 8, . . .}

We add the filter (i.e. predicate), i.e. only elements bigger than 4:

{i : N | (i > 4)} = {5, 6, 7, 8, . . .}

Then we add the pattern (i.e. expression), and obtain the transformed
elements:

{i : N | (i > 4) • (2 ∗ i) + 1} = {11, 13, 15, 17, . . .}

• As a comparison: {i : N • (2 ∗ i) + 1} = {1, 3, 5, 7, . . .}.

• Exercise: “evaluation” of {i : N; j : N | (j = 2 ∗ i) • i + j}
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Power-sets and Cartesian Products (Typed Set-Theory, 4)

• The power-set P S is the set of all sub-sets of S , e.g.:

P{x , y} = {∅, {x}, {y}, {x , y}}

Axiom: T ⊆ S iff T ∈ P S

• The cartesian product S × T consists of all pairs (x , y), where x ∈ S and
y ∈ T .

S × T = {x : S ; y : T | true}
Axioms:

– (x1, . . . , xn) ∈ (S1 × . . .× Sn) iff (x1 ∈ S1) ∧ . . . ∧ (xn ∈ Sn)
– t = (x1, . . . , xn) iff (t .1 = x1) ∧ . . . ∧ (t .n = xn) (projection)
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Union, Intersection, Difference (Typed Set-Theory, 5)

Axioms for union, intersection, difference:

• x ∈ (S ∪ T ) iff (x ∈ S ) ∨ (x ∈ T )

• x ∈ (S ∩ T ) iff (x ∈ S ) ∧ (x ∈ T )

• x ∈ (S \ T ) iff (x ∈ S ) ∧ (x 6∈ T )

• etc.
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Types (Typed Set-Theory, 6)

• Each value x in a specification is assigned (has) exactly one type:

the biggest set (in the specification) for which x ∈ S .

• Z has only one pre-defined type: the integers Z.

• All other types are built from Z, basis-types and free types.

⇒ The type expressions are:

τB ::= Z [the integers]

| B [Basis types and free types]

| P τB [Power−set types]

| τB × . . .× τB [Product types]

| [tag1  τB , . . . , tagn  τB ] [Tagged record types]

Software Engineering Spring 2002



Luca Viganò 12

Types (Typed Set-Theory, 7)

• Basis types: internal structure is not further specified, e.g.

[NAME ]

• Free types: an enumeration of constants, e.g.

COLORS ::= red | orange | yellow | green | blue | indigo | violet

(Similar to programming languages.)
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Types (Typed Set-Theory, 8)

Let T and U be types.

• Power-set types: P T is the type of all subsets of T .

– P T is the type of the set whose elements have type T .
– Example: {−1, 0, 1, 2} has type P Z.

• Product types: T ×U is the type of all (ordered) pairs of elements of T and
elements of U .

– Examples:
∗ by definition: + has type (Z× Z)→ Z, and (3, 4) has type Z× Z.
∗ COLORCODE == COLORS × Z has type P(COLORS × Z).

– Alternative notation for T ×U : T ↔U or T →U .

• Tagged record types: later (defined as schema types).
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Types (Typed Set-Theory, 9)

• Each value x in a specification is assigned (has) exactly one type.

– The assignment is not explicit (syntactically impossible, as it is not possible
to declare that a constant has a particular type)

– but it is implicit in a declaration (by “set-membership”):
x : S with S a set of type P τB .

• Important:

– Each type is a set, but not all sets are types!
– A type is a “maximal” set.
– Example:
∗ The natural numbers are not a type, but they are a set.

(Formal definition later.)
∗ A natural number (e.g. 1 or 3) has type Z.
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Types (Typed Set-Theory, 10)

• Each value x in a specification is assigned (has) exactly one type.

⇒ type-checking algorithms can detect inconsistencies in the use of variable
names and expressions (in a Z-document).

– These algorithms are implemented in tools and systems that support Z
(e.g. ZETA).

– They increase the trust in a formal specification.
– They cannot, however, verify the interpretation of names and inferences!
– Example:

{2, 4, red , yellow , 6} [TYPE ERROR! Elements have different type]

Sets are typed, i.e. all elements must have the same type.
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Types (Typed Set-Theory, 11)

• Judgments and inference rules allow one to identify well-typed/-formed
expressions and predicates.

For example: to rule out 3 < ∅ and 5 ∧ Z.

• Let ΣB and ΓB be a constants-environment and a variables-environment (c :: τ
and v :: τ , with τ in τB).

• Def.: A judgment `E for expressions is a tuple (ΣB ,ΓB , e, τ), where e ∈ E and
τ ∈ τB . We then write:

ΣB ,ΓB `E e :: τ

“Expression e has type τ in the context of the environments ΣB and ΓB”.

• Def.: A judgment `P for predicates is a tuple (ΣB ,ΓB , p), where p ∈ P .
We then write:

ΣB ,ΓB `P p
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Types (Typed Set-Theory, 12)

• Some inference rules for expressions:

{c :: τ} ∪ ΣB ,ΓB `E c :: τ
Const

ΣB ,ΓB `E e1 :: τ1 . . . ΣB ,ΓB `E en :: τn
ΣB ,ΓB `E (e1, . . . , en) :: τ1 × . . .× τn

Prod

ΣB , {v :: τ} ∪ ΓB `E v :: τ
Var

ΣB ,ΓB `E e :: τ1 → τ2 ΣB ,ΓB `E e ′ :: τ1

ΣB ,ΓB `E e e ′ :: τ2
Appl

• Some inference rules for well-formed predicates:

ΣB ,ΓB `P true True
ΣB ,ΓB `P p

ΣB ,ΓB `P ¬ p Not
ΣB ,ΓB `P p ΣB ,ΓB `P p′

ΣB ,ΓB `P p ⇒ p′ Implies

ΣB, ΓB `E e1 :: τ1 . . . ΣB, ΓB `E en :: τn ΣB, ΓB `E p :: P(τ1 × . . .× τn)

ΣB, ΓB `P p(e1, . . . , en)
PredAppl
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Types (Typed Set-Theory, 13)

• We can now show + (3, 4) :: Z, where Σ0 contains all arithmetic constant
declarations (including + :: (Z× Z)→ Z, 3 :: Z and 4 :: Z):

Σ0,Γ `E + :: (Z× Z)→ Z Const
Σ0,Γ `E 3 :: Z Const Σ0,Γ `E 4 :: Z Const

Σ0,Γ `E (3, 4) :: Z× Z Prod

Σ0,Γ `E + (3, 4) :: Z Appl

• Try to prove 3 < ∅ or 5 ∧ Z!
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Types (Typed Set-Theory, 14)

• Our use of types restricts the way we define and use sets.

– E.g.: x ∈ S is valid only when the type of S is the power-set of type of x .

• These restrictions are however welcome, as they rule out the paradoxes of
untyped set-theory!

E.g.: the set of sets that are not element of themselves (cf. Russell’s barber
paradox) is not typable!
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Definitions of Objects in Z (1)

• Declarations:

– Basis types.
– Free types.
– New variables:

x : S

where S is either Z or an already defined set (but not necessarily a type).

• Examples:

i : Z [i is an integer]
n : N [n is a natural number (n has type Z)]
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Definitions of Objects in Z (2)

• Abbreviations:

symbol == term e.g.: SEinstructors == {Basin,Vigano‘,Wolff }

– symbol is a new name for an already defined term.
– Each abbreviation can be eliminated from a specification.

• Generic abbreviation: introduce parameterized symbols

symbol parameters == term

Example:

P1 T == {a : P T | a 6= ∅} ⇒ P1{0, 1} = {{0}, {1}, {0, 1}}

We can also define generic infix-symbols, e.g. S rel T == P(S × T )
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Definitions of Objects in Z (3)

• Axiomatic definitions: introduce constraints on the definiendum.

x : S

p

Declaration

Predicate (axiom for object x : S )

– Corresponds to (x : S ) ∧ p (important for formal reasoning).
– Beware that in this way one can introduce inconsistencies in the specification.

– Example: formal definition of the natural numbers:

N : P Z

∀ z : Z • (z ∈ N) ⇔ (z ≥ 0)
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Definitions of Objects in Z (4)
– Special case: when p is true then

x : S (can also be inconsistent, when S = ∅)

– Generic axiomatic definitions

[X ]
x : X

p

The set X is a formal parameter of the definition.

– There can be several parameters, declarations and predicates:

Declarations

Predicate
...
Predicate

d1, d2, d3 : Z

d1 + d2 = 7
d1 < d2
d1 + d3 = 0

Corresponds to
(d1 : Z) ∧ (d2 : Z) ∧ (d3 : Z) ∧ (d1 + d2 = 7) ∧ (d1 < d2) ∧ (d1 + d3 = 0)
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Sets and predicates

• All objects in Z are sets

⇒ predicates are defined in terms of the sets of objects that satisfy them.

• Examples:

Definition of predicate “is a crowd” over sets of persons:

crowds : P(P Person)

crowds = {s : P Person | #s > 2} ( # is size or cardinality of set s)

so that
{Jack , Janet ,Chrissy} ∈ crowds is true

{Adam,Eve} ∈ crowds is false
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Z and Booleans (1)

• Several formal (and programming) languages have a Boolean data type, with
true and false.

• Z does not! (As it is not needed.)

• Example: Microwave oven (see semi-formal dynamic modeling)

– In Z-look-alike language:

power , door : BOOLEAN [This is not Z! No built−in Boolean type]

power ⇒ door

– Problem: when door is true, is it open or closed?
– In Z: use descriptive binary enumerations:

POWER ::= off | on
DOOR ::= closed | open

so that we can then write: (power = on) ⇒ (door = closed)
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Z and Booleans (2)

• Another example: relation odd

– In Z-look-alike language: odd as Boolean function

odd : Z→ BOOLEAN [This is not Z! No built−in Boolean type]

and then odd(3) = true, odd(4) = false, etc.

– In Z: relations are sets (with ∈ and 6∈)

odd : P Z and then 3 ∈ odd , 4 6∈ odd , etc.

Or as prefix: | odd : P Z and then odd(3), ¬odd(4), etc.
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Relations (1)

• Binary relation: a set of ordered pairs (a subset of a Cartesian product)

X ↔Y == P(X ×Y ) (X and Y sets)

Graphical representation
by means of Venn-diagrams:

X ↔Y
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Relations (2)
Example: University telephone list (database)

telephones : Person ↔ Phone

⇒ telephones ⊆ Person × Phone

E.g.:
(Vigano‘, 8243) ∈ telephones

Equivalent maplet notation:

Vigano‘ 7→ 8243 ∈ telephones

A person can have more than one telephone number:

Basin 7→ 8240 ∈ telephones and Basin 7→ 8241 ∈ telephones

Or two people can share a telephone number:

Wolff 7→ 8247 ∈ telephones and Brucker 7→ 8247 ∈ telephones
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Relations (3)

• The full state of the system (corresponds to a table):

telephones : Person ↔ Phone

telephones =
{Basin 7→ 8240,
Basin 7→ 8241,
Vigano‘ 7→ 8243,
Wolff 7→ 8247,
Brucker 7→ 8247,
Ayari 7→ 8244,
. . .}

Person Phone

Basin 8240
Basin 8241
Vigano‘ 8243
Wolff 8247
Brucker 8247
Ayari 8244
. . . . . .
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Relations (4)
Important notation and properties:

first(Vigano‘, 8243) = Vigano‘ and second(Vigano‘, 8243) = 8243

Domain and range of a relation:

[X ,Y ]
dom : (X ↔Y )→ P X
ran : (X ↔Y )→ P Y

∀R : (X ↔Y ) •
domR = {x : X | ∃ y : Y • (x , y) ∈ R} ∧
ranR = {y : Y | ∃ x : X • (x , y) ∈ R}
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dom R ranR
Equivalent notation:

• domR = {x : X ; y : Y | x 7→ y ∈ R • x}

• ranR = {x : X ; y : Y | x 7→ y ∈ R • y}

e.g.: x ∈ dom telephones iff ∃ y : Phone • x 7→ y ∈ telephones.
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Operations on relations: Queries (Relations, 5)

• There are several rules and axioms about dom and ran.

• Domain restriction C and anti-restriction −C

[X ,Y ]
C , −C : (P X )× (X ↔Y )→ (X ↔Y )

∀A : P X ; R : (X ↔Y ) •
AC R = {x : X ; y : Y | (x 7→ y ∈ R) ∧ (x ∈ A) • x 7→ y} ∧
A−C R = {x : X ; y : Y | (x 7→ y ∈ R) ∧ (x 6∈ A) • x 7→ y}

• range restriction B and anti-restriction −B

[X ,Y ]
B , −B : (X ↔Y )× (P Y )→ (X ↔Y )

∀R : (X ↔Y ); A : P Y •
R BA = {x : X ; y : Y | (x 7→ y ∈ R) ∧ (y ∈ A) • x 7→ y} ∧
R −BA = {x : X ; y : Y | (x 7→ y ∈ R) ∧ (y 6∈ A) • x 7→ y}
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Operations on relations: Queries (Relations, 5.1)

• Examples:

– {Basin,Wolff }C telephones = {Basin 7→ 8240,Basin 7→ 8241,Wolff 7→
8247}

– {Basin,Wolff ,Vigano‘}C telephones −B {8240, 8247} = {Basin 7→
8241,Vigano‘ 7→ 8243}

• N.B.: A1 C R −BA2 = (A1 C R)−BA2 = A1 C (R −BA2)
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Operations on relations: Overriding (Relations, 6)

• Overriding ⊕ models database updates:

[X ,Y ]
⊕ : (X ↔Y )× (X ↔Y )→ (X ↔Y )

∀R,S : (X ↔Y ) •
R ⊕ S = ((domS )−C R) ∪ S

Example:

telephones =
{Basin 7→ 8240,

. . . ,
Brucker 7→ 8247, ⇒
Ayari 7→ 8244,
. . .}

telephones ⊕ {Brucker 7→ 8248,Ayari 7→ 8249} =
{Basin 7→ 8240,

. . . ,
Brucker 7→ 8248,
Ayari 7→ 8249,
. . .}
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Operations on relations: Images (Relations, 7)

• Relational image of A under R:

[X ,Y ]
(| |) : (X ↔Y )× (P X )→ (P Y )

∀R : (X ↔Y ); A : P X •
R(|A|) = {y : Y | ∃ x : A • x 7→ y ∈ R

⇒ R(|A|) = ran(AC R)

Example:

telephones(|{Basin,Wolff }|) = ran({Basin,Wolff }C telephones)
= {8240, 8241, 8247}
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Operations on relations: Inverse (Relations, 8)

• Relational inverse:

– Relations are “directed”, i.e. R : (X ↔Y ) relates an element of X with one
of Y .

– ∼ inverts source and target of a relation.

[X ,Y ]
∼ : (X ↔Y )→ (Y ↔X )

∀R : (X ↔Y ) •
R∼ = {x : X ; y : Y | (x 7→ y ∈ R) • y 7→ x}

– Example:
{Wolff 7→ 8247,Vigano‘ 7→ 8243}∼ = {8247 7→ Wolff , 8243 7→ Vigano‘}
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Operations on relations: Composition (Relations, 9)

• Composition of relations:

[X ,Y ,Z ]
o
9 : (X ↔Y )× (Y ↔ Z )→ (X ↔ Z )

∀R : (X ↔Y ); S : (Y ↔ Z ) •
R o

9 S = {x : X , z : Z | (∃ y : Y • (x 7→ y ∈ R) ∧ (y 7→ z ∈ S )) • x 7→ z}

Example:
telephones : Person ↔ Phone and departments : Phone ↔Department
⇒ {Vigano‘ 7→ software − engineering} ∈ telephones o

9 departments

Also: backwards directed composition:

[X ,Y ,Z ]
◦ : (Y ↔ Z )× (X ↔Y )→ (X ↔ Z )

∀R : (X ↔Y ); S : (Y ↔ Z ) •
S ◦ R = R o

9 S
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Operations on relations: Iteration and Closures (Rel., 10)

• Iterated composition:

[X ]
iter : Z→ (X ↔X )→ (X ↔X )

∀R : (X ↔X ) •
iter 0R = idX ∧
(∀ i : Z • iter(i + 1)R = R o

9 (iter i R)) ∧
(∀ i : Z • iter(−i)R = R o

9 (iter i (R∼)))

• Closures: transitive closure + and reflexive-transitive closure ∗

[X ]
+, ∗ : (X ↔X )→ (X ↔X )

∀R : (X ↔X ) •
R+ =

⋂
{S : (X ↔X ) | (R ⊆ S ) ∧ (S o

9 S ⊆ S )} ∧
R∗ =

⋂
{S : (X ↔X ) | (idX ⊆ S ) ∧ (R ⊆ S ) ∧ (S o

9 S ⊆ S )}
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Latex and E-mail Formats

name type latex e-mail math

integers P Z \num %Z Z

naturals P Z \nat %N N

upto Z× Z→ P Z .. .. ..

numbers Z -2,0,5,... -2,0,5,... −2, 0, 5, ...

less Z↔ Z < < <

equality α↔ α = = =

emptiness P α \{\} {} {}

membership α↔ P α \in %e ∈

membership α↔ P α : : :

subset P α↔ P α \subseteq %c_ ⊆

union P α× P α→ P α \union %u ∪
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name type latex e-mail math

set of subsets P α→ P P α \power %P P

cardinality P α→ Z \# # #

cartesian

product P α× P β → P(α× β) \cross %x ×

union P α× P α→ P α \union %u ∪

relation P α× P β → P P(α× β) \rel <-> ↔

domain P P(α× β)→ P α \dom \dom dom

domain restriction P α× (α↔ β)→ (α↔ β) \dres <| C

override (α↔ β)× (α↔ β)→ (α↔ β) \oplus (+) ⊕
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Overview

• We continue with: The Z Language and The Mathematical Toolkit.

– A semantic library is defined on top of the “basis language”.

• Next classes: Applications.
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Functions (1)

Functions are particular relations, where each element of a set is related to at
most one element of another set.

The set X 7→Y of the partial functions is:

X 7→Y ==
{f : X ↔Y | ∀ x : X ; y1, y2 : Y •

(x 7→ y1 ∈ f ) ∧ (x 7→ y2 ∈ f ) ⇒ y1 = y2}
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Example (from Birthdaybook): birthday : NAME 7→DATE

but telephones : Person ↔ Phone is not a function!
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Functions (2)

A total function from X to Y is a partial function from X to Y , which maps
each element of X to exactly one element of Y .

The set X →Y of all such functions is:

X →Y == {f : X 7→Y | dom f = X }
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Examples:

• Total function double

double : N↔ N

∀m,n : N • (m 7→ n ∈ double) ⇔ (m + m = n)

• Functions on relations: in the definitions of dom, C, ⊕, etc.

e.g.: ⊕ : (X ↔Y )× (X ↔Y )→ (X ↔Y )
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Examples of function application (Functions, 3)

• Evaluation of double(double(2)).

double : N↔ N

∀m,n : N • (m 7→ n ∈ double) ⇔ (m + m = n)

corresponds (informally, that is with ‘. . .’)

double = {0 7→ 0, 1 7→ 2, 2 7→ 4, . . .}

so that double(double(2)) = double(4) = 8

• ( + ) = {. . . , (1, 1) 7→ 2, (1, 2) 7→ 3, . . . , (3, 4) 7→ 7, . . .}, so that

( + )(3, 4) = 7
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Rules for function application (Functions, 4)

∃1 p : f • p.1 = a (a 7→ b) ∈ f
b = f (a) app-intro (if b does not occur free in a)

∃1 p : f • p.1 = a b = f (a)
(a 7→ b) ∈ f app-elim (if b does not occur free in a)
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Lambda notation (Functions, 5)

We can express

f = {x : X | p • x 7→ e}

also by means of Lambda notation:

f = λ x : X | p • e λ Declaration | Constraint • Expression

Example:

double : N↔ N

double = λm : N • m + m

double : N↔ N

∀m,n : N •
(m 7→ n ∈ double) ⇔ (m + m = n)
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Properties of functions (Functions, 6)
• Set X 7�Y of partial injections:

X 7�Y == {f : X 7→Y | f ∼ ∈ Y 7→X }
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• Set X �Y of total injections:

X �Y == {f : X →Y | f ∼ ∈ Y 7→X }
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• Set X 7→→Y of partial surjections:

X 7→→Y == {f : X 7→Y | ran f = Y }
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• Set X →→Y of total surjections:

X →→Y == {f : X →Y | ran f = Y }
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• Set X �→Y of total bijections:

X �→Y == (X �Y ) ∩ (X →→Y )
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Finite sets and finite functions (Functions, 7)

A finite set F is a set whose elements are enumerable up to a natural number n.

• That is, there is a total bijection with domain 1, 2, . . . ,n and range F .

• Example: n = 3 and F = {a, b, c} =⇒ {1 7→ a, 2 7→ b, 3 7→ c}.

• Number range operator (‘upto’):

. . : (N× N)→ P N

∀m,n : N • m . . n = {i : N | m ≤ i ≤ n}

=⇒ Set of all finite subsets:

F X == { s : P X | ∃n : N • ∃ f : (1 . . n)�→ s • true}
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Finite sets and finite functions (Functions, 8)

When the set X is finite then

• F X = P X

• # is the size (cardinality) of X

[X ]
# : F X → N

∀ s : F X ; n : N •
n = #s ⇔ ∃ f : (1 . . n)�→ s • true

Finite function: domain is a finite set.

• The sets of finite functions (or injections) from A to B are:

A 7 7→ B == {f : A 7→ B | dom f ∈ F A} or A 7 7� B == (A 7 7→ B) ∩ (A 7� B)
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Sequences (1)

• Sequences are ordered collections (unlike sets).

• Example: the months form a sequence.

The name declaration

MONTHS ::= jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec

does not however imply an ordering =⇒ seq-operator

year : seqMONTHS

year = 〈 jan, feb,mar , apr , jun, jul , aug , sep, oct ,nov , dec 〉

• Example:

– 〈〈feb,mar〉, 〈〉, 〈apr〉〉 ∈ seq(seqMONTHS ) [empty sequence 〈〉]
– 〈77, 5, 6, 18, 43, 61〉 ∈ seq N
– 〈{1, 2, 83}, ∅〉 ∈ seq(P N)
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Sequences (2)

• The set of finite sequences of elements of the set X is

seqX == {f : N 7 7→X | ∃n : N • dom f = 1 . . n}

so that 〈apr , jan, dec, sep〉 is an alternative notation for the set

{1 7→ apr , 2 7→ jan, 3 7→ dec, 4 7→ sep}

• N.B.: here we only considered finite sequences, but one can extend Z with a
theory of infinite sequences.
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Operations on Sequences (3)

• Sequences are functions =⇒ we can apply them on numbers, e.g.

σ = 〈apr , jan, dec, sep〉 =⇒ σ(3) = dec

• Functions are sets =⇒ we can apply set-operators, e.g.

#〈apr , jan, dec, sep〉 = 4

• Concatenation (sequence constructor):

[X ]
a : (seqX )× (seqX )→ (seqX )

∀σ, τ : seqX •
σ a τ = σ ∪ {n : dom τ • (n + #σ) 7→ τ(n)}
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Operations on Sequences (4)

• Sequence distructors: head, tail

[X ]
head : seqX 7→X
tail : seqX 7→ seqX

head = ∀σ : seqX | σ 6= 〈〉 •
head σ = σ(1)

∀σ : seqX | σ 6= 〈〉 •
#tail σ = #σ − 1
∀ i : 1 . . #σ − 1 • (tail σ)(i) = σ(i + 1)

so that when σ 6= 〈〉

〈head σ〉a 〈tail σ〉 = σ
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Operations on Sequences (5)

• Filtering: σ �F is the sequence σ ‘filtered’ by the set F ⊆ X (order of elements
is respected).

• Extraction: E � σ is the sequence of elements of σ, which occur in a position in
σ, whose index occurs in the set E ⊆ N1.

• Examples:

– 〈a, b, c, d , e, d , c, b, a〉 � {a, d} = 〈a, d , d , a〉
– 〈〉 � F = 〈〉
– σ �∅ = 〈〉
– {0, 1, 3, 5} � 〈apr , jan, dec, sep〉 = 〈apr , dec〉
– E � 〈〉 = 〈〉

• Formal definition (and further operators): see literature.
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Further Sequences (6)

• The set of the non-empty finite sequences of elements of the set X is

seq1 X == {f : seqX | f 6= 〈〉}

• The set of injective finite sequences of elements of the set X is

iseqX == seqX ∩ (N 7�X )

An injective sequence contains no repetitions or duplicates, e.g.

– 〈jan, feb,mar〉 is injective,
– 〈jan, feb, jan〉 not.
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Further Operations on Sequences (7)

Further operations on sequences can be found in the literature, including:

• Sequence constructor: distributed concatenation

• Sequence distructors: front and last

[X ]
front : (seq1 X )→ (seqX )
last : (seq1 X )→X

front = λ σ : seq1 X • (1 . . #σ − 1)C σ
last = λ σ : seq1 •σ(#σ)

Head and tail can alternatively be defined with λ and seq1.
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Further Operations on Sequences (8)

Further operations on sequences can be found in the literature, including:

• Reverse:

[X ]
rev : (seqX )→ (seqX )

∀σ : seqX •
rev σ = λn : dom σ • σ(#σ − n + 1)
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Multisets

• Multisets (or bags) are sets in which elements may occur more than once (the
order is not important, as for sets).

• The set of multisets of elements of the set X is

bag X == X 7→ N \ {0}

• Finite multisets are “parenthesized” with ‘[[’ and ‘]]’, and the element-symbol is
−@, so that

– [[3, 5, 3, 1, 9]] = [[1, 3, 3, 5, 9]] 6= [[1, 3, 5, 9]],
– 3 −@ [[3, 5, 3, 1, 9]].

• See literature for further operators, such as union, intersection, difference, and
‘occurrence-count’.
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Schemata (1)

• Z consists of two sub-languages:

– mathematical language, which allows us to model design aspects, objects
and their relations.

– schema language, which allows us structure, compose and split modelings
(data, functions and predicates).

• Z-schemata

– can be used as declarations, as types, and as predicates,
– can model the state space (states and state transitions) of a system,
– can be used to verify formal modelings.
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Syntax of Schemata (Schemata, 2)

• Vertical syntax:

name
declaration of typed variables

(represent observations of the state)

relationships between values of vars
(invariants of the system)

SchemaOne
a : Z
c : P Z

a ∈ c
c 6= ∅

• Horizontal syntax:

name =̂ [declarations | predicate]

• Name and constraints are optional, e.g.

a : Z
c : P Z

corresponds to
a : Z
c : P Z

true
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Schemata as Types and Declarations (Schemata, 3)

• To introduce tagged record-types.

SchemaTwo
a : Z
c : P Z

corresponds to a composite data-type with two different components: an
integer a and a set of integers c.

• We can represent it as a binding, e.g.

〈| a  2, c  {1, 2, 3} |〉 [a is bound to 2, c to {1, 2, 3}]

• Components are “saved” by name (in Cartesian products: by position), and are
selected by the operator ‘ . ’.

When s is an object of schema-type SchemaOne is, then

– s.a is its integer component,
– s.c is its set component.
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Schemata as Types and Declarations (Schemata, 4)

• Bindings express the semantics of schemata:

A
c0 : S0

. . .
cn : Sn

P

is equivalent to

A =̂ {c0 : S0; . . . ; cn : Sn | P • 〈| c0  c0, . . . , cn  cn |〉}

• This is a characteristic binding: each component is bound to a value with the
same name.
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Schemata as Types and Declarations (Schemata, 5)

Example:

SchemaThree
a : Z
c : P Z

a ∈ c
c 6= ∅
c ⊆ {0, 1}

describes the set of bindings

SchemaThree = {〈| a  0, c  {0} |〉, 〈| a  0, c  {0, 1} |〉,
〈| a  1, c  {1} |〉, 〈| a  1, c  {0, 1} |〉}

that is, the set

{a : Z; c : P Z | (a ∈ c) ∧ (c 6= ∅) ∧ (c ⊆ {0, 1}) • 〈| a  a, c  c |〉}
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Schemata as Types and Declarations (Schemata, 6)

• N.B.: in a characteristic binding 〈| a  a |〉, the component (i.e. the tag) a on
the left of  is bound to the value of the variable a on the right of  !

• When S is the name of the schema, we can write θS to denote the
characteristic binding of the components of S , e.g.

θSchemaThree = 〈| a  a, c  c |〉
so that the set of bindings of SchemaThree in the previous slide are equal to

{SchemaThree • θSchemaThree}

• When a schema name is used, where one would expect a set or a type, then it
represents the corresponding set of bindings. For each schema S , the
declaration s : S is an abbreviation of a : {S • θS}. (The variable s is declared
to be a binding of appropriate type that meets the constraint part of schema S .)

• Details: see J. Woodcock and J. Davies, Using Z, pages 154–158.
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Data Modeling with Z and E/R-diagrams (1)

• E/R-diagrams can be translated into Z specifications.

• In particular: Z allows one to formalize the constraints on data, which are
implicit in E/R-diagrams.

• Translation takes place in 3 steps:

1. The basis entities.
2. The aggregate entities.
3. The relations.
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Basis entities (Z and E/R-diagrams, 2)
The basis entity

Name
Department
Income

Employee

corresponds to the Z-schema (with built-in constraints):

[NAME ]
DEPARTMENT ::= A | B | C

Employee
Name : NAME
Dept : DEPARTMENT
Income : 1000 . . 5000

if Dept = A then(1000 ≤ Income) ∧ (Income ≤ 3000)
else if Dept = B then(3000 ≤ Income) ∧ (Income ≤ 5000)

else(4000 ≤ Income) ∧ (Income ≤ 6000)
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Aggregate entities (Z and E/R-diagrams, 3)
The aggregate entity

containscontains

Date

Meeting

Room

1

1 1

1 corresponds to Meeting == Date × Room
or
Meeting == Room ×Date

and

containscontains

Date Room

Meeting−series
1 1

n n

corresponds to

Meeting − Series == (seqDate)× (seqRoom)
or
Meeting − Series == (P Room)× (P Date)
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Relations (Z and E/R-diagrams, 3)

RoomDate
takes
place

m n

corresponds to the relation

takes − place == Date ↔ Room

and

Name
Department
Income

Employeeemploys
1 nAddress

Form
Sales p.a.

Company

corresponds to the function

employs == Employee 7→ Company
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Basis Entities (Z and E/R-diagrams, 5)

N.B.: When unique identifiers (IDs) are present, then it makes sense to carry out
an expansion:

CompanyIDhas
1Address

Form
Sales p.a.

Company
1

so that there exists a partial injection

has == CompanyId 7� Company

The above is roughly equivalent to

Address
Form

Sales p.a.
ID

Company
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Summary

• What we have seen:

– The Z Language and The Mathematical Toolkit.
– The mathematical language and the schema language.

• What we will see:

– More about schemata and the schema calculus.
– Applications.
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Latex and E-mail Formats

name latex e-mail math

partial function \pfun -|-> 7→
total function \fun --> →
finite partial function \ffun -||-> 7 7→
injection \inj >--> �

finite injection \finj >-||-> 7 7�
partial injection \pinj >-|-> 7�
surjection \surj -->> →→
partial surjection \psurj -|->> 7→→
bijection \bij >-->> �→
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Latex and E-mail Formats

name latex e-mail math

seq-operator \seq \seq seq

iseq-operator \iseq \iseq iseq

seq brackets \langle \rangle %< %> 〈 〉
nil \nil \nil 〈〉

concatenation \cat ^ a

head head head head

tail tail tail tail

filter \filter |\ �

extract \extract /| �

Software Engineering Spring 2002



Formal Modeling with Z: Part IV

Luca Viganò
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Schemata

• Z consists of two sub-languages:

– mathematical language, which allows us to model design aspects, objects
and their relations.

– schema language, which allows us structure, compose and split modelings
(data, functions and predicates).

• Z-schemata

– can be used as declarations, as types, and as predicates,
– can model the state space (states and state transitions) of a system,
– can be used to verify formal modelings.
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Overview

• More about schemata and the schema calculus.

– Schemata as declarations, types and predicates.
– Operations on schemata (conjunction, inclusion, decoration, etc.).
– Modeling of states and state transitions.

• Application.

– BirthdayBook , 8-Queens and radiation therapy system.
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Syntax of Schemata
Vertical syntax:

name
declaration of typed variables

(represent observations of the state)

relationships between values of vars
(invariants of the system)

SchemaOne
a : Z
c : P Z

a ∈ c
c 6= ∅

Horizontal syntax:

name =̂ [declarations | predicate]

Name and Constraints are optional, e.g.

a : Z
c : P Z

corresponds to
a : Z
c : P Z

true
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Schemata as Types and Declarations

• To introduce tagged record types.

SchemaTwo
a : Z
c : P Z

corresponds to a composite datatype with two distinct components: an integer
a and a set of integers c.

• We can represent it as a binding, e.g.

〈| a  2, c  {1, 2, 3} |〉 [a is bound to 2 c to {1, 2, 3}]

• Components are stored by name (in Cartesian products: by position), and are
selected by the operator ‘ . ’.

When s is an object of schema type SchemaTwo, then

– s.a is its integer component,
– s.c is its set component.
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Schemata as Types and Declarations (2)

• Bindings express the semantics of schemata:

A
c0 : S0

. . .
cn : Sn

P

is equivalent to

A =̂ {c0 : S0; . . . ; cn : Sn | P • 〈| c0  c0, . . . , cn  cn |〉}

• This is a characteristic binding: each component is bound to a value with the
same name.

Software Engineering Spring 2002



Luca Viganò 6

Schemata as Types and Declarations (3)
Example:

SchemaThree
a : Z
c : P Z

a ∈ c
c 6= ∅
c ⊆ {0, 1}

describes the set of bindings

SchemaThree = {〈| a  0, c  {0} |〉, 〈| a  0, c  {0, 1} |〉,
〈| a  1, c  {1} |〉, 〈| a  1, c  {0, 1} |〉}

that is, the set

{a : Z; c : P Z | (a ∈ c) ∧ (c 6= ∅) ∧ (c ⊆ {0, 1}) • 〈| a  a, c  c |〉}
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Equivalence of Schemata

• Two schemata are equivalent, when

– they introduce the same variables, and
– set on them the same constraints.

• N.B.: constraints can be implicit in the declarations, e.g.

Birthdaybook
known : P NAME ; birthday : NAME ↔DATE

known = dom birthday ∧ birthday : NAME 7→DATE

is equivalent to (note also: ‘; ’ and ‘∧’ replaced by separation)

Birthdaybook
known : P NAME
birthday : NAME 7→DATE

known = dom birthday
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Equivalence of Schemata (2)

Beware:

. . .

a ⇒ b
c ∨ d

is equivalent to . . .

(a ⇒ b) ∧ (c ∨ d)

but

. . .

∃ y : T •
x < y ∨
y < x

is equivalent to . . .

∃ y : T • (x < y) ∨ (y < x )
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Schemata as Declarations (1)

A schema can be used as a declaration.

• For example, in a comprehension or after a quantifier.

• Effect: introduction of the variables of the declaration part, under the
constraints of the predicate part.

• Example:

SchemaOne
a : Z
c : P Z

a ∈ c
c 6= ∅

∃SchemaOne • a = 0 ⇔ ∃ a : Z, c : P Z | (a ∈ c) ∧ (c 6= ∅) • a = 0
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Schemata as Declarations (2)
Another example:

MONTHS ::= jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
Date

month : MONTHS
day : 1 . . 31

month ∈ {apr , jun, sep,nov} ⇒ day ≤ 30
month = feb ⇒ day ≤ 29

Then, for quantifier Q and predicate p:
QDate • p ⇔ Qmonth : MONTHS , day : 1 . . 31 |

(month ∈ {apr , jun, sep,nov} ⇒ day ≤ 30) ∧
(month = feb ⇒ day ≤ 29) • p

so that
∃Date • (month = feb) ∧ (day = 29) is true

∀Date • day ≤ 30 is false, as there is 〈| month  mar , day  31 |〉.
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Schemata as Predicates (1)

• A schema can be used as a predicate, provided that each component has
already been declared as a variable of the correct type.

– Effect: introduction of a constraint equivalent to the predicate information.
– Declaration part is deleted; only the constraints remain.
– Example:

SchemaOne
a : Z
c : P Z

a ∈ c ∧ c 6= ∅

and

SchemaThree
a : Z
c : P Z

a ∈ c ∧ c 6= ∅
c ⊆ {0, 1}

∀ a : Z; c : P Z | SchemaOne • SchemaThree
⇔

∀ a : Z; c : P Z | (a ∈ c) ∧ (c 6= ∅) • (a ∈ c) ∧ (c 6= ∅) ∧ (c ⊆ {0, 1})

That is, all a : Z and c : P Z that satisfy SchemaOne must also satisfy
SchemaThree.
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Schemata as Predicates (2)

• The declaration part of a schema can contain constraints, so that

SchemaFour
a : N
c : P N

a ∈ c ∧ c 6= ∅

is not equivalent to

SchemaOne
a : Z
c : P Z

a ∈ c ∧ c 6= ∅

• To avoid confusion: normalization

Reduces the declaration part to a canonical form, e.g.

SchemaFourNormalized
a : Z
c : P Z

a ∈ N
c ∈ P N
a ∈ c ∧ c 6= ∅

=⇒

now we see that
SchemaFour contains
more information
than SchemaOne
(a ≥ 0 and b ∈ c ⇒ b ≥ 0)
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Schemata Operators and Calculus

• (Logical) Operations on schemata:

– Renaming, inclusion, decoration, conjunction and disjunction
– and other ones (normalization, negation, quantification, hiding and piping).

=⇒ we can (sequentially) structure and compose specifications.
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Renaming of Schemata

• Renaming of the components of a schema:

Schema[new/old ]

=⇒ introduction of new variables under the same structure of declarations and
constraint (systematic substitution), e.g.

SchemaOne
a : Z
c : P Z

a ∈ c ∧ c 6= ∅

=⇒ SchemaOne[q/a, s/c]
is equivalent to

q : Z
s : P Z

q ∈ s ∧ s 6= ∅

• N.B.: renaming yields a new schema type.

– SchemaOne: bindings of a and c to values in Z and P Z.
– SchemaOne[q/a, s/c]: bindings of q and s to values in Z and P Z.
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Generic Schemata

• It is possible to rename the components, but not to change their type.

• To employ the same structure for different types: generic schema with formal
parameters.

• Example

SchemaFive[X ]
a : X
c : P X

a ∈ c ∧ c 6= ∅

is equivalent to

SchemaOne
a : Z
c : P Z

a ∈ c ∧ c 6= ∅

when X is Z, and to

SchemaFour
a : N
c : P N

a ∈ c ∧ c 6= ∅

when X is N
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A Specification of Sorting
Sort a sequence of objects in non-decreasing order.

[X ]
nondecreasing : (X ↔X )→ P(seqX )

∀R : X ↔X ; σ : seqX •
σ ∈ nondecreasing(R) ⇔
(∀ i , j : dom σ | i < j • (σ(i), σ(j )) ∈ R)

Sort [X ]
in?, out ! : seqX
rel? : X ↔X

rel? ∈ totord X
out ! ∈ nondecreasing [X ](rel?)
items(out !) = items(in?)

• nondecreasing(R) is a set of sequences in non-decreasing order iff R : X ↔X
is a total order,
that is, a reflexive, antisymmetric and transitive order on all all elements of X
(e.g. ≤ for the integers).

• totord X is the set of all total order for the set X .

• items yields the multiset of the elements of a sequence, e.g.

items 〈a, b, a, a〉 = [[a, b, a, a]] = {a 7→ 3, b 7→ 1}

Software Engineering Spring 2002



Luca Viganò 17

Conjunction of Schemata

Conjunction: allows for the independent specification of a system, which can then
be combined (separation of concerns).

S
a : A
b : B

P

and

T
b : B
c : C

Q

=⇒ S ∧ T =̂
a : A
b : B
c : C

P ∧Q

N.B.: when the same variable is declared in S and T , then it must be the case
that their types coincide (otherwise S ∧ T is undefined).
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Inclusion of Schemata

• Inclusion (import, inheritance): has the same effect as conjunction, but it
suggest a hierarchical structure.

• Example:

Lambda
x , y : Z
U : P Z

x < y

=⇒
Mu

Lambda
V : P Z

x ∈ V

that is

Mu
x , y : Z
U : P Z
V : P Z

x < y
x ∈ V

• The initial state of a system is also an inclusion:

InitBirthdayBook
BirthdayBook

known = ∅
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Decoration of Schemata (1)

A system-state:

State
a : A
b : B

P

Each object of a schema-type State represents a valid state: a binding of a and b
under the predicate P (state-invariant).

An operation on the state is described by two copies of State, one before and one
after the operation (with ′).

State ′
a ′ : A
b′ : B

P [a ′/a, b′/b]

so that
we can
write

Operation
State
State ′

. . .

that is

Operation
a : A; b : B
a ′ : A; b′ : B

. . .
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Decoration of Schemata (2)

An operation that modifies the state (structured inclusion ∆):
AddBirthday

∆BirthdayBook

name? : NAME
date? : DATE

name? 6∈ known
birthday ′ =

birthday ∪ {name? 7→ date?}

i.e.

AddBirthday
known, known ′ : P NAME
birthday , birthday ′ : NAME 7→DATE
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ =

birthday ∪ {name? 7→ date?}
known = dom birthday
known ′ = dom birthday ′

In general: ∆State means ‘State and State ′’
∆State

State
State ′

. . .

models the state before (variables without ′)
and that after (variables with ′)
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Decoration von Schemata (3)

An operation that does not modify the state (structured inclusion Ξ):
FindBirthday

ΞBirthdayBook

name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

i.e.

FindBirthday
known, known ′ : P NAME
birthday , birthday ′ : NAME 7→DATE
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)
known ′ = known
birthday ′ = birthday
known = dom birthday
known ′ = dom birthday ′

In general: ΞState means ‘State and State ′, where variable′ = variable’
ΞState

∆State

θState ′ = θState

where θState models the characteristic binding
of the components of State
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Disjunction of Schemata

Disjunction: models alternatives in the behavior of a system.

S
a : A
b : B

P

and

T
b : B
c : C

Q

=⇒ S ∨ T =̂
a : A
b : B
c : C

P ∨Q

N.B.: when the same variable is declared in S and T , then it must be the case
that their types coincide (otherwise S ∨ T is undefined).
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The Complete BirthdayBook (1)

• We can now refine the specification of BirthdayBook .

• We have not yet formalized what happens when the input of the operation is
incorrect:

– Does the operation ignore the input?
– Does the BirthdayBook -system crash?

• Example:

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ =

birthday ∪ {name? 7→ date?}

What happens when name? ∈ known ???
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The Complete BirthdayBook (2)

• Extend the specification with schemata that model the errors and the reaction
to them.

• We extend each system-operation with an additional output result !

REPORT ::= ok | already known | not known

• and add a general Success-schema

Success
result ! : REPORT

result ! = ok
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The Complete BirthdayBook (3)
Refinement of the addition of a new birthday:

• Input correct: execute AddBirthday and return ok , i.e.

AddBirthday ∧ Success

• Input incorrect: add a schema that signals the error

AlreadyKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? ∈ known
result ! = already known

Robust AddBirthday :

RAddBirthday =̂ (AddBirthday ∧ Success) ∨AlreadyKnown
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The Complete BirthdayBook (4)

Refinement of the search:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

NotKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? 6∈ known
result ! = not known

RFindBirthday =̂ (FindBirthday ∧ Success) ∨NotKnown

Refinement of Remind :

RRemind =̂ Remind ∧ Success

Software Engineering Spring 2002



Luca Viganò 27

The Complete BirthdayBook (5)
We could have written only one schema:

RAddBirthday
∆BirthdayBook
name? : NAME
date? : DATE
result ! : REPORT

((name? 6∈ known) ∧ (birthday ′ = birthday ∪ {name? 7→ date?}) ∧ (result ! = ok))∨
((name? ∈ known) ∧ (birthday ′ = birthday) ∧ (result ! = already known))

We must then write explicitly that for incorrect input the state is not modified.

Moreover: the modularity is lost!

No separation between normal operations (with general Success-schema) and
error-handling.

In the literature: more complex forms of modularization of Z-specifications.
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Negation of Schemata

Negation of a normalized schema:

S
a : A
b : B

P

=⇒
¬S =̂

a : A
b : B

¬P

A non-normalized schema must be first (implicitly) normalized, e.g.

SchemaFour
a : N
c : P N

a ∈ c ∧ c 6= ∅

=⇒
¬SchemaFour =̂

a : Z
c : P Z

¬(a ∈ N ∧ c ∈ P N ∧ a ∈ c ∧ c 6= ∅)

that is, ¬SchemaFour is the negation of SchemaFourNormalized .
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Quantification and Hiding

We can quantify over components of a schema, e.g.

S
a : A
b : B

P

∀ b : B • S =̂ a : A

∀ b : B • P

and ∃ a : A • S =̂ b : B

∃ a : A • P

In general: quantifier declaration • Schema.

Existential quantification of schemata is also called hiding: the quantified
components are not visible anymore, but the predicate tells us that they still exist.

S \ (a) =̂ b : B

∃ a : A • P
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Composition of Schemata

• Composition OpOne o
9 OpTwo models the sequential execution of two

operations. (See also piping of schemata in the literature.)

• OpOne yields State ′′, the state immediately before the execution of OpTwo.

OpOne o
9 OpTwo = ∃ State ′′ • (∃ State ′ • [OpOne; State ′′ | θState ′ = θState ′′])∧

(∃ State • [OpTwo; State ′′ | θState = θState ′′])

Example:

OpOne
a, a ′ : A
b, b′ : B

P

and

OpTwo
a, a ′ : A
b, b′ : B

Q

=⇒ OpOne o
9 OpTwo = (OpOne[a ′′/a ′, b′′/b′] ∧ OpTwo[a ′′/a, b′′/b]) \ (a ′′, b′′)

i.e.

OpOne
a, a ′ : A
b, b′ : B

∃ a ′′, b′′ • P [a ′′/a ′, b′′/b′] ∧ Q [a ′′/a, b′′/b]
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An Example Application: 8-Queens (1)
Problem: position 8 queens on a chess-board so that no queen menaces another
(same row, column oder diagonal).

A menace

Q

Q

A solution
Q

Q
Q

Q
Q

Q
Q

Q

Basis-definitions:

SIZE == 8
ROWS == 1..SIZE
COLS == 1..SIZE
POS == ROWS × COLS

The position of the queens

queens == P POS

Software Engineering Spring 2002



Luca Viganò 32

An Example Application: 8-Queens (2)

• First try: queens cannot be in the same row or column:

queens : P POS

#queens = SIZE
∀ q1, q2 : queens •

q1 6= q2

⇒ first(q1) 6= first(q2) ∧ second(q1) 6= second(q2)

That is, a queen q in a row x has an ‘individual’ column.

• This is a bijection:

queens : ROWS �→ COLS

Each row is ‘assigned’ to one column (and vice versa).
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An Example Application: 8-Queens (3)
Diagonals:

• Each square (Pos) lies on 2 diagonals.

• Each diagonal is described by a value on the Y-axis.

• col = slope × row + intercept

• Up-Diag.: slope =1 and intercept = up

• Down-Diag.: slope =−1 and intercept = down

=⇒ up = col − row and down = col + row

Q

Q
Q

Q
Q

Q
Q

Q

5

9

2
1

-1
-2

Y

0

Also:
DIAG == (1− SIZE )..(2 ∗ SIZE )

up, down : POS →DIAG

∀ x : ROWS , y : COLS • up(x , y) = y − x
∀ x : ROWS , y : COLS • down(x , y) = x + y
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An Example Application: 8-Queens (4)

• up and down are not injective: many squares in a diagonal are assigned the
same Y-value.

• But: domain restriction =⇒ injective

Queens
queens : ROWS �→ COLS

queens C up ∈ POS �DIAG
queens C down ∈ POS �DIAG
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An Example Application: 8-Queens (5)
Summarizing:

SIZE == 8

ROWS == 1..SIZE
COLS == 1..SIZE
POS == ROWS × COLS
DIAG == (1− SIZE)..(2 ∗ SIZE)

up, down : POS → DIAG

∀ x : ROWS , y : COLS • up(x , y) = y − x
∀ x : ROWS , y : COLS • down(x , y) = x + y

Queens
queens : ROWS �→ COLS

queens C up ∈ POS � DIAG
queens C down ∈ POS � DIAG

The set of the bindings Queens contains all solutions: model of all facts required
for the implementation.

No prescription of a particular implementation strategy or programming language.
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An Example Application: Radiation Therapy System (1)

Computer-graphics and algorithmic geometry: points, segments, contours and
polygons.
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An Example Application: Radiation Therapy System (2)

Coordinates:

X == Z
Y == Z
POINT == X ×Y

Contour (polyline): a sequence of connected points

CONTOUR == seqPOINT

Calculation of the radiation dosis: the anatomic areas must be particular contours,
namely polygons!

Polygon: a closed contour with internal and external zones.
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An Example Application: Radiation Therapy System (3)

Polygon
c : CONTOUR

#c ≥ 4

head c = last c
front c ∈ iseq POINT
∀ s1, s2 : segments c | s1 6= s2 •

¬(s1 intersects s2)

Polygon
A polygon is a contour c

c has at least 4 points

First point is duplicated at end

No duplicated point except last (iseq)

No segment intersects any others

(underline : binary relation as infix)

A segment is a pair of points, and segments c computes all sequential point-pairs
in c, i.e.

segments == λ c : CONTOUR • {x , y : POINT | 〈x , y〉 ∈ c}
so that

segments 〈x , y , z , x 〉 = {(x , y), (y , z ), (z , x )}
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An Example Application: Radiation Therapy System (4)

• Contour 〈a, b, c, d , e, f , g , i , e, k , l , a〉:

– Closed, as a is duplicated.

– No polygon, as e is duplicated and some
segments intersect:

∗ Segments (a, b) and (k , l): cross,
∗ Segments (e, f ) and (g , h): touch.

1

3

2

4

5

1 2 3 4

a

b

c

d

e f

g

h

i

k
l

• Definition of intersects:

SEGMENT = POINT × POINT

intersects, crosses, touches : SEGMENT ↔ SEGMENT

∀ s1, s2 : SEGMENTS •
s1 intersects s2 ⇔

(s1 crosses s2 ∧ s2 crosses s1) ∨ s1 touches s2 ∨ s2 touches s1
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An Example Application: Radiation Therapy System (5)

• Definition of crosses and touches:

– Intersection point must not necessarily be an integer.
– Algorithmic geometry: we don’t need to compute the intersection point, in

order to say if the segments intersect.
– We compute the (double) area of a triangle from the coordinates of its

angle-points:

x == first [X ,Y ]; y == second [X ,Y ]
area2 == λ a, b, c : POINT •

(x a ∗ y b − y a ∗ x b) + (y a ∗ x c − x a ∗ y c) + (x b ∗ y c − x c ∗ y b)

– Then: (c, d) crosses (a, b) iff area2(a, b, c) and area2(a, b, d) have
opposite sign, i.e.

area2(a, b, c) ∗ area2(a, b, d) < 0
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An Example Application: Radiation Therapy System (6)

X == Z; Y == Z
POINT == X × Y
CONTOUR == seq POINT
SEGMENT == POINT × POINT
x == first[X , Y ]; y == second [X , Y ]

area2 == λ a, b, c : POINT •
(x a ∗ y b − y a ∗ x b) + (y a ∗ x c − x a ∗ y c) + (x b ∗ y c − x c ∗ y b)

segments == (λ c : CONTOUR • {x , y : POINT | 〈x , y〉 ∈ c})
(between ) == {i, j , k : Z | i < j < k ∨ i > j > k}
(collinear ) == {a, b, c : POINT | area2(a, b, c) = 0}
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An Example Application: Radiation Therapy System (7)

on : POINT ↔ SEGMENT
touches, crosses, intersects : SEGMENT ↔ SEGMENT

∀ s1, s2 : SEGMENT ; a, b, c, d : POINT | s1 = (a, b) ∧ s2 = (c, d) •
(a on s2 ⇔ collinear(c, a, d)∧

((x c 6= x d ∧ between(x c, x a, x d)) ∨
(y c 6= y d ∧ between(y c, y a, y d)))) ∧

(s1 touches s2 ⇔ a on s2 ∨ b on s2) ∧
(s2 crosses s1 ⇔ area2(a, b, c) ∗ area2(a, b, d) < 0) ∧
(s1 intersects s2 ⇔

(s1 crosses s2 ∧ s2 crosses s1) ∨ s1 touches s2 ∨ s2 touches s1)

Polygon
c : CONTOUR

#c ≥ 4

head c = last c
front x ∈ iseq POINT
∀ s1, s2 : segments c | s1 6= s2 • ¬(s1 intersects s2)
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Summary

• What have we seen:

– The Z Language and The Mathematical Toolkit.
– The mathematical language, the schema language and the schema calculus.
– Some applications.

• What will we see: a number of things, including

– ‘from Z -specifications to programs’.
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Overview: coming weeks

• Concepts for structuring large systems and supporting reusability

• Important in the modeling and implementation phases

Requirements

   Definition

System and

Software Design

Implementation and

Integration and

System Testing

Operation and

Maintenance

Unit Testing
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But what does this have to do with software engineering?

• Although high-level design is independent of language/technology ...

• Low-level design and implementation are language/technology dependent!

In the (advanced) development phases one must utilize language and
platform-specific features.

• Concretely, we examine both the functional and object oriented paradigms

... and their realization in Haskell, SML, and Java.

• Later even higher-level structuring concepts like middleware.

Software engineering and programming languages are close cousins!
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Structuring: historical context

• Programs manipulate, uncontrolled, the data or even the code of other programs. (1950)

This serious violation of the principle of modular construction will result in the immediate
revocation of your degree!

• Communication over global variables (C, FORTRAN). (1960)

This violation of encapsulation (information hiding) is only sensible in a few exceptional
circumstances.

• Exchange of control information, for example through global flags. (1960)

Also dangerous.

• Data exchange over procedure/method parameters. (1960-1970)

Standard practice.

• Explicitly defined (e.g., Export/Import) interfaces. (1980)

Standard practice. Important for preventing the uncontrolled use of procedures and methods!
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Part I: Structuring in Haskell

• Haskell is a strongly typed, higher-order, functional programming language.

Supports advanced concepts but easily learned (e.g., in Informatik I).

• Keywords

Polymorphic: Reusability on different kinds of data

Higher-order: Functions take/yield functions

Classes: Overloading of operators and hierarchical structuring

Modules: Control name-space. Used for abstract data types.

Software Engineering Spring 2002



David Basin 5

Reusability through polymorphisum

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (h:t) = (f h):(map f t)

Main> map (\x -> (x,x)) [1,2,3]
[(1,1),(2,2),(3,3)]

Main> map (\x -> (x,x)) ["double", "me"]
[("double","double"),("me","me")]

Main> map (+1) [1,2,3]
[2,3,4]

Main> map (+1) ["double", "me"]
ERROR: [Char] is not an instance of class "Num"

N.B.: parameterized polymorphisum
Same implementation for all type instances (kinds of data).
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Polymorphisum + higher-order functions

isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = ins x (isort xs)

where ins x [] = [x]
ins x (y:ys) = if x < y then x:y:ys else y:ins x ys

Main> isort [3,1,2,1,5]
[1,1,2,3,5]

Main> isort [3.0, 1.0, 5.2, 3.5]
ERROR: ...

Question: How can we sort arbitrary lists?
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Answer #1: type classes

• Generalize the type to isort :: Ord a => [a] -> [a]

• Recall: Ord is a class of types with the ordering

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

• Lists of type [t ] can now be sorted, when t ∈ Ord

Main> isort [1,2,3]
[1,2,3]
Main> isort ["another", "sorting", "example"]
["another","example","sorting"]

• Ordering < is type indexed.
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Answer #2: polymorphisum + higher-order functions

isort :: (a -> a -> Bool) -> [a] -> [a]
isort rel [] = []
isort rel (x:xs) = ins x (isort rel xs)

where ins x [] = [x]
ins x (y:ys) = if x ‘rel‘ y then x:y:ys else y:ins x ys

Main> isort (<) [3, 1, 5, 3]
[1,3,3,5]

Main> isort (\(a,b) (c,d) -> if a + b < c + d then True else False)
[(4,2),(1,1), (5,3), (2,2), (1,2)]

[(1,1),(1,2),(2,2),(4,2),(5,3)]

Main> isort (<) ["another","sorting","example"]
["another","example","sorting"]
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Example (cont.)

lexExtend :: (a -> a -> Bool) -> [a] -> [a] -> Bool
lexExtend rel [] _ = True
lexExtend rel (x:_) [] = False
lexExtend rel (x:xs) (y:ys) =

if x ‘rel‘ y then True
else if y ‘rel‘ x then False
else lexExtend rel xs ys

strOrd :: [Char] -> [Char] -> Bool
strOrd x y = lexExtend (<) (map ord x) (map ord y)

Main> isort strOrd ["here", "is", "an", "interesting", "example", "to", "sort"]
["an","example","here","interesting","is","sort","to"]
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Polymorphisum + higher-order (cont.)

• How can one sort lists in the reverse order?

swapOrd :: (a -> b -> c) -> b -> a -> c
swapOrd rel x y = rel y x

Main> isort (swapOrd strOrd) ["here", "is", "an", "example", "to", "sort"]
["to","sort","is","here","example","an"]

• How can one sort strings backwards?

rev :: [a] -> [a]
rev [] = []
rev (x:xs) = rev(xs) ++[x]

revOrd :: [Char] -> [Char] -> Bool
revOrd x y = lexExtend (<) (listify x) (listify y)

where listify s = rev (map ord s)

Main> isort revOrd ["here", "is", "an", "interesting", "example", "to", "sort"]
["example","here","interesting","an","to","is","sort"]
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Reusability

• Higher-order functions offer high reusability

• Strong generalization of Unix ‘pipe’ Idea

cat /usr/dict/words | rev | sort | rev | grep "^a" | pr -t -3 | more

a atrophic anastomotic
amoeba anamorphic asymptotic
armada automorphic aseptic
addenda anorthic apocalyptic
agenda acyclic aspartic
anaconda angelic antagonistic
althea alcoholic anachronistic
azalea apostolic autistic
area acrylic atavistic
alfalfa aerodynamic agnostic
alga academic acoustic
aloha algorithmic attic
alpha astronomic aeronautic
... ... ...

Find rhymes (for amature poet): e.g., ”‘apostolic”’ and ”‘alcoholic”’
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Structuring using modules

• Functions abstract computation steps

Analogous to procedures in imperative programming languages.

• Modules are the next abstraction level.

– Modules define an interface.

– In Haskell, modules define collections of values, data types, type definitions,
classes, etc. in an environment.

• Haskell modules are very simple

– Basically control/organize name spaces.

– Can be used for abstract data types.
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An example

• Default: all data types, functions, ... are exported

module Tree where

data Tree a = Leaf a | Node (Tree a) (Tree a)

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Node l r) = fringe l ++ fringe r

...

• Module can be imported into other modules

module foo where
import Tree

... fringe ( ... Leaf ... ) ...

All names/bindings are imported
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Module — name space control

• One can control imported/exported names.

– Data types, constructors, and n functions are exported

module Tree ( Tree(Leaf,Node), f1, ..., fn )

– or without constructors

module Tree(Tree, f1, ..., fn)

In 2nd case we have an error in:

module Goo where

import Tree
g = Leaf

• We can similarly restrict the name space when importing modules.
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ADTS — an application of modules

• A data type is one (or more) set(s) of data and related functions. A signature
describes the types of the functions.

data Tree a -- just the type name
leaf :: a -> Tree a
node h :: Tree a -> Tree a -> Tree a
cell :: Tree a -> a
left,right :: Tree a -> Tree a
isLeaf :: Tree a -> Bool

• An abstract data type is a data type, whose implementation is encapsulated.
One has access to data only through functions declared in the signature.

• Modules are a possible way of implementing ADTs.
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Example

• Tree ADT:

module TreeADT (Tree, leaf, node, cell, left, right, isLeaf) where

data Tree a = Leaf a | Node (Tree a) (Tree a)
leaf = Leaf
node = Node
cell (Leaf a) = a
left (Node l r) = l
right (Node l r ) = r
isLeaf (Leaf _) = True
isLeaf _ = False

• Leaf and Node are not exported

⇒ One cannot write a function using pattern matching to decompose trees.

• But you can analyze and decompose data in a representation independent way.
And also build data (how?).

• Encapsulation means that changes are always local.
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Part II: Structuring in SML

• SML is a strongly typed, higher-order functional programming language.

– Developed at AT&T/Bell Labs for programming in the large.

– Main difference to Haskell: eager, reference types, and a very advanced
module system.

– Used to solve many real world problems!

• Modules in SML

– Support encapsulation

– Separate interface specification (signature) from implementation (structure
or functor)

– Parameterized (polymorphic types)

– Functors support the composition of data types

– Separate compilation possible
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Structures: composite environments

• 2 examples for Booleans

structure A1 = structure A2 =
struct struct

type Bool = bool type Bool = int
val True = true val True = 1
val False = false val False = 0
fun Not x = not x fun And (x:int) y = x * y
fun And x y = x andalso y end;

end;

Similar to struct in C, but one can also specify types and functions.

• Example application

- A1.True;
val it = true : bool

- A2.And (A2.False A2.True);
val it = 0 : int
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Signature: specification of interfaces

• Signature for BOOL

- signature BOOL =
sig

type Bool
val True : Bool
val False : Bool
val Not : Bool -> Bool
val And : Bool -> Bool -> Bool

end;

• “Signature Matching” is analogous to type checking.

• The required functions (types, ...) must be defined in the structure in a
type-correct way.

- structure S1 : BOOL = A1;
structure S1 : BOOL

• Otherwise we have an error

- structure S2 : BOOL = A2;
stdIn:40.1-40.25 Error: unmatched value specification: Not
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Example: queues

• The signature

signature QUEUE =
sig

type ’a queue
exception E
val empty: ’a queue
val enq: ’a queue * ’a -> ’a queue
val null : ’a queue -> bool
val hd : ’a queue -> ’a
val deq : ’a queue -> ’a queue

end;

• N.B. Signature uses parametric polymorphisum

Also note exception for error handling (like in Java)

• Questions:

– What is the difference between a signature for queues and stacks?

– What is a simple implementation? Efficiency?
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A simple implementation

structure queue1:QUEUE =
struct

type ’a queue = ’a list
exception E

val empty = []
fun enq (q,x) = q@[x];

fun null (x::q) = false
| null _ = true

fun hd (x::q) = x
| hd [] = raise E

fun deq(x::q) = q
| deq [] = raise E

end;

- queue1.deq (queue1.enq(queue1.enq (queue1.empty, 3),7));
val it = [7] : int queue1.queue

- stack.deq (stack.enq(stack.enq (stack.empty, 3),7));
val it = [3] : int stack.queue
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Example: efficient queues

• Pairs of lists
([x1, x2, ..., xm], [y1, y2, ..., yn])

implement queues
x1, x2, ..., xm, yn, ...y2, y1

• Supports O(1) enqueue enq(q , y)

([x1, x2, ..., xm], [y , y1, y2, ..., yn])

• and O(1) dequeue deq(q)

([x2, ..., xm], [y1, y2, ..., yn])

• Only trick: When first list is empty, the second is reversed and replaces the first

([], [y1, y2, ..., yn]) ↪→ ([yn, ..., y2, y1], [])

• How efficient is such an implementation?

Software Engineering Spring 2002



David Basin 23

Efficient queues
structure queue2:QUEUE =

struct
datatype ’a queue = Queue of (’a list * ’a list);
exception E;

val empty = Queue([],[]);

(*Normalized queue, if nonempty, has nonempty heads list*)
fun norm (Queue([],tails)) = Queue(rev tails, [])

| norm q = q;

(*norm has an effect if input queue is empty*)
fun enq(Queue(heads,tails), x) = norm(Queue(heads, x::tails))
fun null(Queue([],[])) = true | null _ = false;
fun hd(Queue(x::_,_)) = x | hd(Queue([],_)) = raise E;

(*normalize in case heads become empty*)
fun deq(Queue(x::heads,tails)) = norm(Queue(heads,tails))

| deq(Queue([],_)) = raise E;
end;

- queue2.deq (queue2.enq(queue2.enq (queue2.empty, 3),7));
val it = Queue ([7],[]) : int queue2.queue

- queue2.hd (queue2.deq (queue2.enq(queue2.enq (queue2.empty, 3),7)));
val it = 7 : int
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Signature + Structure 6= Abstraction

• An abstract object is only known through its exported (interface) functions.
Realization and internal form are not externally decernable.

• Consider queue1:

- queue1.enq ([], 3);
val it = [3] : int queue1.queue

- queue1.enq ([], 3) = [3];
val it = true : bool

- queue1.deq ["hi", "there", "people"];
val it = ["there","people"] : string queue1.queue

• Data type, but not an abstract data type!

– Well-defined interface and separate realization ...

– But no abstraction
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‘Opaque’ signature constraints

• Queue1 again (without constraints)

structure queue1 =
struct

type ’a queue = ’a list
exception E

val empty = []
fun enq (q,x) = q@[x];
fun null (x::q) = false | null _ = true
fun hd (x::q) = x | hd [] = raise E
fun deq(x::q) = q | deq [] = raise E

end;

• ‘Transparent’ Constraints

structure q : QUEUE = queue1;

• ‘Opaque’ Constraints

structure qa :> QUEUE = queue1;
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Transparent versus opaque constraints

• Transparent

- q.enq(q.enq(q.empty,2),1);
val it = [2,1] : int queue.queue

- q.deq [1,2];
val it = [2] : int queue.queue

Well-defined interface, but no encapsulation

• Opaque

qa.enq(qa.enq(qa.empty,2),1);
val it = - : int qa.queue

- qa.hd it;
val it = 2 : int

- qa.deq [1,2];
stdIn:320.1-320.13 Error: operator and operand don’t agree [tycon mismatch]

operator domain: ’Z qa.queue
operand: int list
in expression: qa.deq (1 :: 2 :: nil)

Generic, abstract data type + encapsulation (information hiding)
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Parameterization

• Problem: How does one write new functions that manipulate queues?

• Example: Queue to/from Lists

fun foldl f e [] = e (* f(xn, ..., f(x_1, e) ...) *)
| foldl f e (h::t) = foldl f (f(h,e)) t

fun fromlist l = foldl (fn (x,q) => Q.enq(q,x)) Q.empty l

fun tolist q = if Q.null q then []
else Q.hd q :: tolist (Q.deq q)

Functions only definable when Q is already bound, i.e., for a given structure.

• Direct abstraction over structures is not possible.

fun fromlist l Q = foldl (fn (x,q) => Q.enq(q,x)) Q.empty l

std_in:0.0-0.0 Error: unbound structure: Q in path Q.empty
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Structure parameterization (cont.)

Functors: Structures that are parameterized over other structures.

- functor TestQueue (Q:QUEUE) =
struct

fun foldl f e [] = e (* f(xn, ..., f(x_1, e) ...) *)
| foldl f e (h::t) = foldl f (f(h,e)) t

fun fromlist l = foldl (fn (x,q) => Q.enq(q,x)) Q.empty l

fun tolist q = if Q.null q then []
else Q.hd q :: tolist (Q.deq q) end;

- structure T2 = TestQueue (qa);
structure T2 :

sig
val foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
val fromlist : ’a list -> ’a Q.queue
val tolist : ’a Q.queue -> ’a list

end

- qa.hd (T2.fromlist [1,2,3,4,5]);
val it = 1 : int

- T2.tolist (T2.fromlist [1,2,3,4,5]);
val it = [1,2,3,4,5] : int list
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Modules — the idea

• Module: a structure or a parameterized structure.

• Signature: fixes the external interface.

• Analogy to functions/types

– Just as functions can be parameterized by other functions, structures can be
parameterized by other structures.

– Type checking tests composibility of functions/data. Signature checking
insures that the proper interface is provided.

• Idea at the module level is considerably more powerful!

• We will consider two examples: one artificial, one realistic.
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Example #1: A System of 3 Modules

C

BA

• Dependency: B requires A and C requires A and B

• Simplest structuring:

structure A:SIGA = struct ... A-stuff... end;
structure B:SIGB = struct ... A.goo ... end;
structure C:SIGC = struct ... A.goo ... B.foo ... end;

• Although signatures provide a well-defined interface,

– dependences are hidden, and

– the implementation is fixed prematurely.
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Better solution based on functors

functor mkA():SIGA = struct ... A-stuff... end;

funktor mkB(A:SIGA):SIGB = struct ... A.goo ... end;

funktor mkC(structure A:SIGA structure B:SIGB):SIGC =
struct ... A.goo ... B.foo ... end;

N.B.:

• 0ary functors show independence.

• n-ary (n > 1) functors require the keyword ‘structure’ before each parameter
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Example — concretized

signature SIGA =
sig

type t
val mk: int -> t
val p:t*t -> t

end;

signature SIGB =
sig

type b
type t

val b0:b
val f: b -> t

end;

signature SIGC =
sig

type t
val test:t

end;
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Example (cont.)

functor mkA(): SIGA =
struct

type t = string
fun mk(i:int) = str(chr((i + ord #"a") mod 128))
fun p(n,m) = n ^ m end;

functor mkB(A:SIGA): SIGB =
struct

type b = string
type t = A.t
val b0 = "abc"
fun f(s) = A.mk(size s) end;

functor mkC(
structure A:SIGA
structure B:SIGB):SIGC =

struct
type t = A.t
val test = A.p(A.mk 1, A.p(A.mk 4, B.f(B.b0))) end;

SML answers:
stdIn:161.17-161.49 Error: operator and operand don’t agree [tycon mismatch]

operator domain: t * t operand: t * ?.t
in expression: A.p (A.mk 4,B.f B.b0)

Why?
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Example (with sharing constraints)

functor mkC(
structure A:SIGA
structure B:SIGB
sharing type A.t = B.t):SIGC =

struct
type t = A.t
val test = A.p(A.mk 1, A.p(A.mk 4, B.f(B.b0)))

end;

structure A = mkA();
structure B = mkB(A);
structure C = mkC(structure A = A

structure B = B);

example:

- A.mk 1;
val it = "b" : t

- C.test;
val it = "bed" : C.t
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Example #2: generic arithmetic

• Arithmetic with zero/sum/prod

signature ZSP =
sig

type t
val zero : t
val sum : t * t -> t
val prod : t * t -> t

end;

• Typical structure

structure IntZSP:ZSP =
struct

type t = int;
val zero = 0;
fun sum (x,y) = x+y: t;
fun prod (x,y) = x*y: t;

end;
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Matrices: a completely different structure

• n ×m Matrix 
n1,1 n1,2 . . . n1,m

n2,1 n2,2 . . . n2,m
... ... ...

nn,1 n2,2 . . . nn,m


is represented as a list of lists

[[n1,1,n1,2, . . . ,n1,m], [n2,1,n2,2, . . . ,n2,m], . . . [nn,1,nn,2, . . . ,nn,m]]

• How do we build matrices with a ZSP interface?

• Problem 1: matrices over what kind of elements?

Solution: parameterize matrices over ZSP elements

• Problem 2: representation of 0?

Solution: instead of an m × n matrix zero-matrix, we define a single 0 element,
where 0 + A = A + 0 = A and 0×A = A× 0 = 0.
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Matrices as functors

functor MatrixZSP (Z: ZSP) : ZSP =
struct

type t = Z.t list list;

fun pairmap f ([],[]) = []
| pairmap f ((h::t),(h’::t’)) = (f (h,h’)) :: (pairmap f (t,t’));

val zero = [];

fun sum (rowsA,[]) = rowsA
| sum ([],rowsB) = rowsB
| sum (rowsA,rowsB) = pairmap (pairmap Z.sum) (rowsA,rowsB);

fun dotprod pairs = foldl Z.sum Z.zero (pairmap Z.prod pairs);

fun transp ([]::_) = []
| transp rows = map hd rows :: transp (map tl rows);

fun prod (rowsA,[]) = []
| prod (rowsA,rowsB) =

let val colsB = transp rowsB
in map (fn row => map (fn col => dotprod(row,col)) colsB) rowsA
end;

end;
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Matrices as functors (cont.)

- structure IntMatrix = MatrixZSP (IntZSP);

- IntMatrix.sum ([[1,2],[3,4]], [[5,6],[7,8]]);
val it = [[6,8],[10,12]] : IntMatrix.t

- IntMatrix.sum ([[1,2],[3,4]], IntMatrix.zero);
val it = [[1,2],[3,4]] : IntMatrix.t

- IntMatrix.prod ([[1,2],[3,4]], [[0,1],[1,0]]);
val it = [[2,1],[4,3]] : IntMatrix.t
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Graph application (reusability)

• Some graph algorithms operate over binary matrices

Adjacency matrix (i , j ) means there is an edge from node i to node j .

• We interpret zero as false, sum as disjunction and product as conjunction.

0 + x = x + 0 = x x × 0 = 0× x = 0

structure BoolZSP:ZSP =
struct

type t = bool;
val zero = false;
fun sum (x,y) = x orelse y;
fun prod (x,y) = x andalso y; end;

- BoolZSP.sum(BoolZSP.zero,true);
val it = true : BoolZSP.t

- structure BoolMatrix = MatrixZSP (BoolZSP);

- BoolMatrix.sum(BoolMatrix.zero, [[true,false],[false,true]]);
val it = [[true,false],[false,true]] : BoolMatrix.t
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Graph connectivity

• G ×G iff there is a path from i to j of length 2.

• There is a path from i to j iff (i , j ) = true in G + G ×G + G ×G ×G + ...

- fun closure t f un = (* compute t un f(t) un f(f(t)) un ... *)
let fun closure_with ft res =

let val nft = f ft
val nres = un (res, nft) in
if res = nres then res else closure_with nft nres end

in closure_with t t end;

val closure = fn : ’’a -> (’’a -> ’’a) -> (’’a * ’’a -> ’’a) -> ’’a

fun graph_closure g = closure g (fn x => BoolMatrix.prod(x, g)) BoolMatrix.sum;

- graph_closure [[false,true,false,false],
[false,false,true,true],
[false,true,false,false],
[false,false,false,false]];

val it =
[[false,true,true,true],
[false,true,true,true],
[false,true,true,true],
[false,false,false,false]] : BoolMatrix.t
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Graph example: conclusion

• Same functor works for, e.g., real and complex numbers

• Functor application can be iterated

- structure IntMatMat = MatrixZSP (MatrixZSP (IntZSP));
structure IntMatMat : ZSP

- IntMatMat.sum ([ [[[1]]], [[[2]]] ], [ [[[5]]], [[[6]]] ]);
val it = [[[[6]]],[[[8]]]] : IntMatMat.t

• Functors support a signature-correct composition of structures

⇒ Functors enable the correct composition of systems from subsystems

• Question: What does correct mean? How powerful is this notion?
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Part III: Structuring in OO-languages

• Object orientation is both a world view as well as a particular language feature,
that supports construction in the large, in particular encapsulation and
reusability.

• World view: the world consists of agents that offer services.

Example: If you want to send flowers to your mother, go to a florist and order
them. How the florist carries this out is his business.

• Technically, OO-languages offer different structuring mechanisms.

– Classes, interfaces, inheritance, polymorphisum, ...

– Support both classic ADTs and OO-development
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Let’s start with an example

• Queues as a Java Class

import java.util.LinkedList; // Implements List interface (extends collection)

class Queue {
private LinkedList list;
public Queue() { list = new LinkedList(); }
public void enq(Object x) { list.addLast(x); }
public Object deq() { return list.removeFirst(); }
public Object hd() { return list.getFirst(); }
public boolean isEmpty() { return list.size() == 0; }

}

• Encapsulation and name-space control through:

import: specifies the class (LinkedList) in a package (java.util)

public/protected/private: specifies further control
⇒ information hiding for queues.
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Classes versus modules

• Classes and modules both support

– Definition of interfaces

– Encapsulation

• Non-abstract classes also specify the implementation.

– Alternative: abstract methods or interfaces

• SML-approach separates signature and implementation

– Supports creation of multiple instances

• Differences in further structuring capabilities

– Inheritance versus parameterization through functors.
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Interfaces

• Interfaces defines objects can interact with each other

– When one takes responsibilities seriously (informal/Z/...), an interface fixes
both syntactic and semantic properties.

– I.e., an interface defines a contract!

• Advantage: decouples client and provider.

– Any implementation that satisfies the contract is considered correct.

– Unfortunately Java/C++/... can only statically check quite restricted
aspects, e.g., that a class which implements and interface provides all
required methods.
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Example: Lists (from java.util)

public interface Collection {
int size(); // the number of elements in this collection
boolean isEmpty(); // true if collection contains no elements
boolean contains(Object o); // true if collection contains Object o
Iterator iterator(); // returns an iterator over elements in collection
boolean add(Object o); // Adds an element. True if collection changed
boolean remove(Object o); ... }

public interface List extends Collection {
int size();
...
Object get(int index); // Get element at index in a list
Object set(int index, Object element); // Set element at index in a list
... }

Semantic aspects are stated informally as comments.

Example: Interface Collection is identical to Set, but the contract is different.

The Set interface places additional stipulations, beyond those inherited from the Collection

interface, on the contracts of all constructors and on the contracts of the add, equals and

hashCode method. ... The additional stipulation on constructors is, not surprisingly, that all

constructors must create a set that contains no duplicate elements.
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Interfaces, types, and polymorphisum

• In the OO-world, a type corresponds to a set of objects that implement a
particular interface.

– The types names all operators and input/output parameters

– This constitutes a very weak semantic contract!

• Polymorphisum: An object of a subtype can always be used in place of an
object of a supertype.

Example: A Linkedlist can always be used where a List is expected.

• Question: What is the difference to parametric polymorphisum in Haskell and
SML?
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Example: queues (again)

• Multiple classes can implement the same interface.

public interface Queue {...}

class CircularArrayQueue implements Queue
{ CircularArrayQueue(int capacity) {...}

... }

class LinkedListQueue implements Queue
{ LinkedListQueue() {...}

... }

• Interface can be used as a type.

– When objects are always typed by the interface,

Queue expressLane = new CircularArrayQueue(1000);
expressLane.add(new Customer(‘‘Harry’’));

– then later changes are trivial (just change the constructor!)

Queue expressLane = new LinkedListQueue();
expressLane.add(new Customer(‘‘Harry’’));
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Inheritance

• Two kinds:

Inheritance of implementation: The declaration of Subclasses enables the
reuse of implementation.

Inheritance of interfaces: Inherit interfaces and/or contracts.

• Java supports simple inheritance of implementations and multiple inheritance of
interfaces.
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Example: Inheritance of implementation

public abstract class Shape {
public double area() { return 0.0; }
public double volume() { return 0.0; }
public abstract String getName(); }

public class Point extends Shape {
protected int x, y;

public Point(int a, int b) { x = a; y = b}
...
public String getName() { return "Point";} }

public class Circle extends Point {
protected double radius;

public Circle(double r, int a, int b) {
super(a,b); radius = (r >= 0 ? r : 0);

}

public double area() { return Math.PI * radius * radius;}
...
public String getName() { return "Circle";} }
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Multiple inheritance of implementations?

• Simple case (e.g., everything disjoint) is unproblematic

CB

D

• Non-trivial in general
A

CB

D

– What happens in “method overriding” in B or C ?

– Normally B and C have their own state. What happens in D?
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Multiple inheritance (cont.)

• Some OO-languages allow multiple inheritance

Complicated precedence rules are used to eliminate ambiguity

• Java forbids multiple inheritance and supports, as an alternative, multiple
inheritance of interfaces.

Requires that overlapping fields (variables, methods, ...) have identical types.

• Still not completely free of problems

interface Fish { int getNumberOfScales(); }

interface Piano { int getNumberOfScales(); }

class Tuna implements Fish, Piano {
// You can tune a piano, but can you tuna fish?
int getNumberOfScales() { return 91; }

}
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Example: sorting

• Without interfaces:

abstract class Sortable
{ public abstract in compareTo(Sortable b); }

class ArrayAlg
{ public static void isort(Sortable[] a) { ... } }

• Suppose we want to sort employees based on their salary:

class Employee extends Sortable
{ ...

public int compareTo(Sortable b) // compares (this) employee with employee b
{ Employee eb = (Employee) b;

if (salary < eb.salary) return -1;
if (salary > eb.salary) return 1
return 0 } ...

}

• Works, but only sometimes!
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Example (cont.)

• Suppose we want to sort Tiles (rectangles plus “z-order”, i.e., depth in display)

class Tile extends Rectangle
{ private int z;

public Tile(int x, int y, int w, int h, int zz) { super(x,y,w,h); z = zz; }
}

• Problem: Cannot also be a subclass from Sortable.

• Solution: Inheritance of implementation and interface

public interface Comparable { public int compareTo(Object b); }

class Tile extends Rectangle implements Comparable
{ private int z;

public Tile(int x, int y, int w, int h, int zz) { super(x,y,w,h); z = zz; }

public int compareTo(Object b) { Tile tb = (Tile)b; return z - tb.z; }
...

}
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Inheritance: the best thing since sliced bread?

Advantages:

– Interface as contract

– Encapsulation

– Reusable/modifiable code

– Support for “frameworks” and other OO development principles.

Disadvantages:

– Explosion of classes

– Slower execution (price of “Late Binding”)

– High program complexity (model can be useful here!)
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Conclusions

• Complexity of development/implementation =⇒ structuring mechanisms.

• At the language level:

Conceptual: Subsystem, object, ADTs, interfaces, ...

Language support: Encapsulation, name-spaces, modules, functors,
interfaces, inheritance, polymorphisum, ...

• Structuring important in bridging design and implementation.

– Support allows (direct) realization of high-level concepts.

– Some CASE-tools partially automate mappings, e.g., from class model to
class hierarchy or from state chart to a state machine.

– Important and nontrivial research topic (also here)!
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Where are we?

Requirements

   Definition

System and

Software Design

Implementation and

Integration and

System Testing

Operation and

Maintenance

Unit Testing

Question: How do we make the transition from models to code?
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General Idea

• Models are refined in steps, i.e., by incrementally adding information about
static and dynamic properties

• Also possible are refactorization steps, whereby responsibilities are redistributed,
e.g., by introducing design patterns or using standard components.

• At some point one must come to code! (base case)

• We will consider this process starting from both UML and Z models

– Some aspects are relatively simple, e.g., class diagrams =⇒ class hierarchy.

– Others are difficult. E.g., synthesis from sequence diagrams. Why?

• Process can be partially supported by CASE tools

– Typically (only) code generation from class diagrams

– “Round-Trip Engineering” sometimes also supported

– Many open (research) problems
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Code from class diagrams

• Class diagrams are well suited for code generation

– Static constraints have a relative simple semantics

– Interpretation is often unambiguous e.g., A is a subclass of B
– Diagram components reflect aspects of OO-languages

• The situation is less straightforward for functional and dynamic aspects

– Specifications are not constructive

– Functionality is often underdefined (e.g., message sequences)

– A (uniquely determined) function can be implemented by many algorithms

• Let’s begin with class diagrams!
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Classes ⇒ Classes

• Simplest case:

Person

• Corresponding class declaration and method stub.

public class Person { public Person() {} }

• Explanation

– The system has one class “Person”

– It has one constructor (Is this assumption sensible?)

– Nothing specified/generated beyond this

• Abstract class names (italicized) are implemented as abstract classes
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Classes with attributes

• Attributes can be annotated:
Thermometer

− valid : bool
+value: float

• Annotation translated to public (+) or private (−) classifier

• Alternative: encapsulate state and generate get/set methods

public class Thermometer {
private boolean valid = false;
private float value = 0.0;

public Thermometer() {};
public Thermometer(float value){ this.value = value; }
public float getValue() { return value; }
public float setValue(float value) { this.value = value; }

}

• Use of get/set methods is a design decision (not specified by UML)
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Classes with operations

• Operations can be translated to method stubs.

Thermometer

resetTo(val:float):bool

− valid : bool
+ value : float

public class Thermometer
{

private boolean valid;
private float value;
public boolean resetTo(float val) { }

}

• Or to an entire method (if code is also given):

if((val > 0) && val < 100))
{
  value = val;
  return true;
}
else return false;

+ value : float

Thermometer

− valid : bool

resetTo(val:float):bool

public boolean resetTo(float val) {
if((val > 0) && val < 100) { value = val; return true;}
else return false }
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Generalization

• Example with class/interface generalization

EmployeePerson

Prof

<<interface>>

• Corresponds to

public interface Employee { ... }
public class Person {...}

public class Prof extends Person implements Employee
{

public Prof() { super(); } // calls Person
}

• Code generation with multiple inheritance possible for other languages.

Question: Can/should models be independent of the implementation language?
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Associations

• Simple, directed associations

Prof Course

Course objects may send messages to professor objects

• Possible implementation: instance variable in class course + accesser functions.

public class Course {
private Prof prof;

public Prof getProf() { return prof; } // Optional ‘‘structuring’’
public void setProf(Prof prof) { this.prof = prof; }

}
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Associations with direction and roles

• An instance variable is created for each role

Class2Class1
−role1

+role2

−role3

• Translation:

public class Class1 {
private Class2 role1;
public Class2 role2;

}

public class Class2 {
private Class1 role3;

}
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Associations (cont.)

Prof prof duties Course
1 *

• Simplest translation: “Stubs mit Arrays”

public class Prof {
public Course[] duties;

}

public class Course {
public Prof prof;

}

• Alternative: implement associations using a relational database.

– See database class for translating UML to SQL (and JDBC)

– Some CASE tools support this through so-called “Technology Mappings”.
One can then map constraints into SQL.
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Associations (cont.)

Prof prof duties Course
1 *

• Specialized translations also possible
(here Prof manages a set of duties and each duty tracks an associated Prof.)

<<Prof.java>>
private OrderedSet duties;

public boolean hasInDuties(Course elem)
{ return this.duties.get(elem) != null; }

public Enumeration dutiesElements()
{ return duties.elements(); }

public void addToDuties(Course elem)
{ if(!this.hasInDuties(elem))

{ this.duties.add(elem); }
}
public void removeFromDuties(Course elem)
{ if(this.hasInDuties(elem))

{ this.duties.remove(elem);
elem.SetProf(null); }

}

<<Course.java>>
private Prof prof;

public Prof getProf() { return prof; }

public void setProf(Prof prof)
{ if(this.prof != prof) { // new partner

if(this.prof != null) { // inform old
Prof oldProf = this.prof;
this.prof = null;
oldProf.removeFromDuties(this);

}
this.prof = prof;
if(prof != null) { // inform new

prof.addToDuties(this);
}

}
}
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Code generation from Z

• Synthesis from Specifications is a deep, specialized topic

– The problem is difficult: data refinement, algorithmic development, . . .

– The problem is undecidable

Halt
f : N→ N
x : N

f (x ) = 1 ↔ Mx(x ) ↓

where Mx encodes the x th Turing Machine.

• Here we give only a taste (details in advanced courses)
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Refinement

• Refinement: the transformation of an abstract specification into a concrete one

• Simple example:

Abstract: x ′ > x
Concrete: x ′ = x + 1
Implementation: x ′ = x + 1 (syntax depending on programming language)

• Refinement leads to stronger models/formalisms

– Semantically: more deterministic (fewer behaviors)

– Logically: concrete specification implies abstract specification

• Correctness of refinement

x ′ = x + 1 ⇒ x ′ > x
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A refinement example

• Refining sets: [X ]

Abstract
s : P X

• with abstract storage operation

AStore
∆Abstract
x? : X

s ′ = s ∪ {x?}

Question: How do we implement this “system” in a PL with arrays and lists?

Answer: Via data-refinement, whereby we “implement” sets by sequences.
Sequences can later be implemented in the target language.
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Refinement (cont.)

• Concrete state with sequences

Concrete
ss : seq X

• Store element at end

CStore
∆Concrete
x? : X

ss ′ = ss a 〈x?〉

Question: In what sense does a sequence implement a set?

{1, 2, 3} ?≡ 〈2, 3, 1, 3〉

Is this refinement correct?
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Refinement — Correctness

• Correctness (relative to an invariant):

Prove that the concrete implementation is stronger than the abstract one.

s s’

ss ss’

s {x?}U

<x>ss

ranran

• Returning to our example:

invariant: s = ran ss (i.e., also s ′ = ran ss ′)
abstract operation: s ′ = s ∪ {x?}
concrete operation: ss ′ = ss a 〈x?〉

• Refinement is correct when:

s = ran ss ∧ s ′ = ran ss ′ ∧ ss ′ = ss a 〈x?〉 ⇒ s ′ = s ∪ {x?}
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Proof of correctness

• Antecedent

s = ran ss ∧ s ′ = ran ss ′ ∧ ss ′ = ss a 〈x?〉

• Consequence

s ′ = s ∪ {x?}

• Equivalence proof (based on antecedent and 2 lemmas)

s ′ = s ∪ {x?} ⇔ ran ss ′ = s ∪ {x?}

⇔ ran(ss a 〈x?〉) = s ∪ {x?}
⇔ ran ss ∪ ran〈x?〉 = s ∪ {x?}
⇔ ran ss ∪ {x?} = s ∪ {x?}
⇔ s ∪ {x?} = s ∪ {x?}
⇔ true
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From Z to Code

• There are “pragmatic methods” to generate programs from Z specifications

We consider several here. Methods also depend on the programming language
employed (Haskell versus C/C++ versus Java ...).

• Idea:

Z types ; data type definitions
Z axiomatic definitions ; constants (or infrequently changing data)
schemata ; mutable data
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Data types

• Free types correspond enumeration types in programming languages

FAULT ::= overload | line voltage | overtemp | ground short

S
...

faults : P FAULTS

...

• In Haskell: data Fault = Overload | Line_voltage | Overtemp | Ground_short

• The schema S defines to a tuple (. . . , faults, . . .), where faults is realized as a
list of type [Fault]

• In C:

typdef enum { OVERLOAD = 0, LINE_VOLTAGE, OVERTEMP, GROUND_SHORT} fault;

#define N_FAULTS GROUND_SHORT + 1
int faults[N_FAULTS];
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Relations

phone : Name ↔ Z

dom phone = subscribers

• Encoding (in Haskell):

type Name = String
type Phone = (Name,Int)

phones :: [Phone]
phones = [("Luca",2038243),("Stefan",2038244),("Abdel",2038244)]

• Using a relational database is another possibility.

• Functions (over finite domains) also implementable as array or list of pairs.
Example: declaration u : N → Z can be realized in C as:

int u[MAXVAL];

Other possibilities: hash-tables, vectors (Java), or a procedure.
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Schemata

• Schemata specify mutable data

Correspond to (composite) variable declarations, or records, or structures (in
C), or classes (in C++/Java), etc.

• Example: S =̂ [x , y : Z] can be translated as:

– int x,y;

– or typedef struct { int x,y; } S;

– or public class S { int x, y; }

• Instance variables sa, sb, sc : S interpreted (in C) as S sa, sb, sc;

In Java, one produces 3 objects of class S .
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Schemata (cont.)

• A larger example

PS
contactor : SWITCH
preset, setpoint, output : SIGNAL
faults : P FAULT

contactor = open ⇒ setpoint = 0

contactor = open ⇒ output ≤ ε

• C implementation:

typedef int signal
typedef enum { OPEN, CLOSED } switch;

typedef struct power_supply
{

switch contactor;
signal preset, setpoint, output;
int faults[N_FAULTS]

} PS;

Invariants correspond to properties of code, but not code itself!
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From Constraints to Code

• Constraints can be refined to code.

• Syntax: A v C for Concrete refines Abstract.

• Semantics: Every refinement law can be cast as P ∧ Q v S Should hold when
Hoare triple {P} S {Q} is provable.

• Example:
x ′ = x ∧ y ′ = x v t = x ; x = y ; y = t

Refinement law asserts provability of the Hoare triple

{true} t = x ; x = y ; y = t ; {x ′ = y ∧ y ′ = x}

• Topic refinement calculi treated in advanced courses.

– There are a variety of formal approaches, some with computer support.

– We present here just examples of possible refinement steps.
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Expressions, Sets, and Functions

• One can implement expressions (fairly) directly in languages like C, Java, ...

+, ∗, div , mod ; +, ∗, /, %

=, 6= ; ==, !=

∧,∨ ; &&, ||
true, false ; 1, 0

E.g., x mod 2 6= 0 v x%2 != 0

• Set membership: x ∈ s v Search for x in data structure s

If implementation is fixed, e.g., Boolean Arrays, then test is trivial: x ∈ s v s[x ]

• Function application: refinement depends on data structures.

Table: u(x ) v Find item in u with key x
Function: f (x ) v f(x)
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Assignment

• No change ⇒ no code

x ′ = x v (empty statement)

• Single change ⇒ simple assignment

x ′ = e ∧ y ′ = y ∧ z ′ = z v x = e

• Multiple changes cannot necessarily be refinement to multiple assignments

x ′ = y ∧ y ′ = x 6v x = y ; y = x

• General solution requires data-flow analysis/auxiliary variables.

x ′ = e1(x , y) ∧ y ′ = e2(x , y) v t = x ; x = e1(x , y); y = e2(t , y)

• Direct assignment impossible when the target is a data structure.

S ′ = S ∪ {x} v Put x in data structure S

Example: for boolean arrays: S ′ = S ∪ {x} ⊆ s[x ] = TRUE
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Logical Connectives

• Conjunction: can sometimes be refined to a conditional statement

p ∧ s v if (p) s

Example: x = e1 ∧ x ′ = e2 v if (x = e1) x ′ = e2

v if (x == e1) x = e2

• Disjunction: (where p and q describe different conditions)

(p ∧ s) ∨ (q ∧ t) v if (p) s; else if (q) t

Special case:
(p ∧ s) ∨ (¬ p ∧ t) v if (p) s; else t

• N.B.: These rules are not complete. E.g.,

d 6= 0 ∧ n = q ′ ∗ d + r ′ ∧ r ′ < d v ???
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Quantifiers

• Quantifiers (over finite domains) can be replaced by loops

∀ x : S • p(x ) v b = 1; “for (x ∈ S )” if (!p(x )) b = 0;

Here “for (x ∈ S )” is informal. Can be concretized, depending on particular
data structures. E.g., S implemented with Boolean Arrays:

∀ x : S • p(x ) v b = 1; for (i = 0; i < n; i++) if (!p(s[i ])) b = 0;

• Question: How can ∃ x : S • p(x ) be refined?
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Structuring

• Z has a flat, global state:

S = {x , y : Z}
Op = {∆S | x ′ = x + y}

• Direct implementation (e.g., in C) with global variables.

int x, y; /* alternatively packed in a structure */

void op(void) {x = x + y;}

• In Java: state is localized in objects:

public class S {
private int x, y;

public void op() { x = x + y;}
}
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Z Specification ⇒ a Class

FindBirthday

BirthdayBook

AddBirthday

Remind
Init

• Entire specification corresponds to a class

Birthdaybook
known : P NAME
birthday : NAME 7→ DATE

known = dom birthday

class BirthdayBook {
private HashSet known;
private Hashtable birthday;

public BirthdayBook() {
known = new HashSet();
birthday = new Hashtable();

} ...
}
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Birthday Book (conts.)

• Each ∆-Schema defines a method

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

• Refined as:

name? 6∈ known ∧ birthday ′ = birthday ∪ {name? 7→ date?}
v if (name? 6∈ known) birthday ′ = birthday ∪ {name? 7→ date?}
v if (!known.contains(name)) birthday.put(name,date);

• The result (+ Constraint)

public void AddBirthday(String name, String date) {
if(!known.contains(name)) {

birthday.put(name,date);
known.add(name);

}}
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Birthday Book (Cont.)

• The same holds for Ξ-Schemata.

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

public String FindBirthday(String name) {
if(known.contains(name)) {

String date = (String)birthday.get(name);
return date;

}
else return "NO-ENTRY"; }

Alternative: throw an exception. (Dis)Advantages?

• Control is not fixed.

An event model can specify how “the machine” reacts to events
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Conclusion

• Program synthesis is a creative procedure

– CASE tools can help with the skeleton

– In general one cannot (completely) replace creativity

• Prerequisite for an (automatic or manual) refinement is a formal specification
language

• Birthday book example illustrates the way from Z to code

– Z specification corresponds to a machine

– Control is defined elsewhere (e.g., state chart)

• There are OO-variants of Z (Object-Z, OOZE, Z++) that better support
OO-features and even control
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Where are we?

Requirements

   Definition

System and

Software Design

Implementation and

Integration and

System Testing

Operation and

Maintenance

Unit Testing

• Recall: how can models be used?

Conceptual: To formalize domain concepts. No direct relationship to an
implementation.

Specification: To specify interfaces and (in part) semantics

Implementation: Basis for implmeneting object oriented design

• A conceptual or coarse-grain model is not necessarily adequate as a fine-grained
model or for implementation
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Problems/Solutions

• Problems

– High-level models omit implementation details

– Design models may be too problem specific

• Solutions

– Refine model with additional details

– “Refactorize” model to realize a system with comparable behavior, however
with improved (structural, efficiency, ...) properties

∗ Decomposition geared towards reuse of existing components

∗ Application of patterns/frameworks/... to increase reusability

• Let’s examine one such possibility: design patterns
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Design patterns — the idea

• Goal: describe a general solution for a class of development problems

• Description: (Alexander, on architecture, 1977):

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without
ever doing it the same way twice.

• Concept popularized by the Gang of Four: Gamma, Helm, Johnson, Vlissides

– They developed a catalog of design patterns

– Encompassed “expert” design principles for improving software quality.

• Aim: Simpler development, increased reusability, documentation, ...

• General classification for patterns also given

Name, applicability domain, structure (UML-like models), examples, ...
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An example: observer pattern (in gang-of-4 format)

Name: Observer

Type: Object behavioral

Intent: Defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Also Known As: Dependents, Publish-Subscribe
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Observer pattern (cont.)

Motivation: A common side-effect of partitioning a system into a collection of
cooperating classes is the need to maintain consistency between related objects.
You don’t want to achieve consistency by making the classes tightly coupled,
because that reduces their reusability.

For example, many GUIs separate presentation from the underlying application
data allowing classes defining application data and presentation to be
independently reused.
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a   b   c

z  80 10  10
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a = 50%
b = 30%
c = 20%

a     b     c

a
b

c

change notification

requests, modificaitons

The observer pattern describes how to establish these relationships. The key
objects in this pattern are subject and observer. A subject may have any
number of dependent observers. All observers are notified whenever the subject
undergoes a change in state. In response, each observer will query the subject
to synchronize its state with the subject’s state.
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Observer Pattern (cont.)

Applicability: Use the observe pattern in any of the following situations.

• When an abstraction has two aspects, one dependent on the other.
Encapsulating these in separate objects lets you vary and reuse them
independently.

• When a change to one object requires changing others, and you don’t know
how many others must be changed.

• When an object should be able to notify other objects without making
assumptions about who these objects are. In other words, you don’t want
these objects tightly coupled.

Structure: Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

GetState()
SetState()

subjectState

for all o in observers {
o.Update();}

Update()

Observer

ConcreteObserver

Update()

observerState

observerState = 
  subject.GetState();

return subjectState

subject

observers
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Observer Pattern (cont.)

Participants:

Subject: Knows its observers and provides an interface for attaching and
detaching Observer objects.

Observer: Defines an updating interface for objects that should be notified of
changes in a subject.

ConcreteSubject: Stores state of interest to ConcreteObserver objects and
sends a notification to its observers when its state changes.

ConcreteObserver: Maintains a reference to a ConcreteSubject object, stores
state that should stay consistent with the subjects, and implements the
Observer updating interface to keep its state consistent.

Software Engineering Spring 2002



David Basin 8

Observer Pattern (cont.)

Collaborations:

• ConcreteSubject notifies its observers whenever a change occurs.

• After being informed of a change, a ConcreteObserver may query the subject
for information. ConcreteObserver uses this information to reconcile its state
with that of the subject.

aConcreteSubject aConcreteObserver

SetState()

Notify()

GetState()

Update()

Update()

GetState()

anotherConcreteObserver
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Observer Pattern (cont.)

Consequences:
The Observer pattern lets you vary subjects and observers independently.
Further benefits and liabilities include:

1. Abstract coupling between Subject and Observer. All a subject knows is that
it has a list of (Observe class conform) observers. ... They can belong to
different layers of abstraction in a system.

2. Support for broadcast communication. Unlike an ordinary request, the
notification that a subject sends needn’t specify its receiver. The notification
is broadcast automatically to all objects that subscribed to it. The subject
doesn’t care how many interested objects exist; its only responsibility is to
notify its observers. It’s up to the observer to handle or ignore a notification.

3. Unexpected updates. Because observers have no knowledge of each other’s
presence, they can be blind to the ultimate cost of changing the subject. A
seemingly innocuous operation may cause a cascade of updates. This
problem is aggravated by the fact that the simple update protocol provides
no details on what changed in the subject. Without additional protocol to
help observers discover what changed, they may be forced to work hard to
deduce the changes.
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Observer Pattern (cont.)

Implementation:

1) Mapping subjects to their observers. The simplest way for a subject to keep track of observers
is to store explicit references to them. Such storage may be too expensive when there are many
subjects and few observers. One solution is to trade space for time by using an associative
look-up (e.g., a hash table) to maintain the subject-to-observe mapping. ...

3) Who triggers the update? The subject and its observers rely on the notification mechanism
to stay consistent. But who actually calls Notify to trigger the update? Here are two options:

(a) Have state-setting operations on Subject call Notify after they change the subject’s state.
This is easy to implement but has the disadvantage that consecutive operations will cause
consecutive updates, which may be inefficient.

(b) Make clients responsible for calling Notify at the right time. ...

6) Avoiding observer-specific update protocols: the push and pull models. Implementations of
the Observer pattern often have the subject broadcast additional information about the change
(as an argument to Update). At one extreme, which we call the push model, the subject sends
observers information about the change, whether they want it or not. At the other extreme is
the pull model; the subject sends nothing but the most minimal notification, and observers ask
for details explicitly thereafter.
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Observer pattern — in Java

• The Observe Pattern is implemented in Java using Observer Interface.

public void update(Observable o, Object arg)

This method is called whenever the observed object is changed. An application
calls an Observable object’s notifyObservers method to have all the object’s

observers notified of the change. Parameters:
o - the observable object.
arg - an argument passed to the notifyObservers method.

• Observable Class defined as follows: (“data” = “subject”)

public class Observable extends Object

This class represents an observable object, or "data" in the model-view
paradigm. It can be subclassed to represent an object that the application
wants to have observed. An observable object can have one or more observers. ...

Methods:
Observable(): Construct an Observable with zero Observers

void addObserver(Observer o): Adds an observer to the set of observers
for this object ...
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Design patterns: conclusion

• Design patterns offer a technique for structuring fine development

Other techniques for coarse-grained structuring, e.g., architectures.

• Use is wide spread, e.g., see Java libraries!

• Good example of the use of UML diagrams to present conceptual ideas

• Patterns are integrated in some CASE-TOOLS for documentation and
code-integration
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Graphical User Interfaces-
Designs, Models,
Implementations

Burkhart Wolff

AG Softwaretechnik
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Overview

• Designing the User Interfaces (UI): 
goals, principles, techniques

• Modeling and Validating graphical UI's

• Concrete Technologies:

• Implementation in Java/Swing

• Implementation in SmlTk
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Overview

• Where are we in the
development process?

• ... there are bits all over ...
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Designing the User Interface: 
goals, principles, techniques

• General Goals
• intuitive and easy user interaction

• adapting to human abilities, backgrounds, 
motivations . . .

• adapting to human perceptual, cognitive and motor abilities. 
. .

⇒  key-issue for "information society" !!!
• VRS
• speech regognition and generation
• GUI's

⇒  research field: HCI 
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Designing the GUI: 
goals, principles, techniques

• Eight Design-Goals (cf. [Shneiderman 98])
•  reduce short-term memory load

•  visual representation of objects 

•  adaptivity for novice and expert users 

•  consistency 

•  conformance to user expectance

•  "informative" feedback, simple error handling

•  easy reversal of actions

•  design dialogs to yield closure
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Designing the GUI: 
goals, principles, techniques

• Designing a GUI: 
Art or Software Engineering?

• artistic GUI solutions exist:
• specialized for games or highly graphical

application programs (Kai's Power Tools on Mac)

• Web-Design Solutions

• mostly: GUI's are just engineering tasks . . .
• controlled by GUI-style-guides 

(Mac, Motif, Windows ...)
• reaction to "conformance to user expectance"
• reaction to technology (GUI-component libraries)



 Burkhart Wolff

 Software Engineering  Spring 2002

7Designing the GUI: 
goals, principles, techniques

• Graphical Display with Colors
• Special hardware for (re)-drawing and overlay blocks 
• Mostly used: 

             the WIMP -Style Design
                  [Dix et. al 98]
 

• windows, icons, menues, pointers     or
widgets,  icons, mice and pull-down menues

• core:     a data structure widget (Tk) or 
         graphical component (awt/Swing), 
         organized in a tree-like structure.
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8Designing the GUI: 
goals, principles, techniques

Text-Entry

Listbox

Button

Frame
Label Frame

Label

Text-Entry

ListBox

Button

display-view widget-layout-view widget-tree-view

wid1

wid2

wid3

wid4

Filter
  

Quit

  

wid0
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9Designing the GUI: 
goals, principles, techniques

• GUI's are reactive systems:
binding Events to Actions

⇒ GUI's are inherently event/action-systems

⇒ ... all problems of concurrent programming 
• interleavings,  
• locking of resources, 
• synchronization,
• call-backs, notifiers, etc. . .

⇒ ... GUI-development often underestimated
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Modeling and Validating GUI's

• The obvious choice:
Event-Modeling Formalisms such as StateCharts 
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Modeling and Validating GUI's

• System integration level:

• system: ergonomic metrics and criteria 
(GOMS-model)

• Software integration level

• by hand
• by replay
• by generated replay-scripts 

(Test-Case-Generation)
• by verification 
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Validation

• by generated replay-scripts

     SUN-TEST †, . . .

• + Test-Case-Generation
Path-Generation from StateChart,
on dummy data-model

• + Test-Case-Generation based on Data-Model
for System-Integration Test
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Validation:
by Verification 

• Formalizing the GUI-Event-Model

• in temporal logic

• in process algebra formalisms such as 
CSP (concurrent sequentiel processes, Hoare/Roscoe)

• Formalizing design goals

• Proving Refinement of GUI-Event-Model 
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an Example in CSP 

Basissets for Events:

  WIDS       == {wid1,wid2,wid3,wid4}
  EVENTS  == {return, button-1,button-2,button-3,
                         button-1-R,button-2-R,button-3-R}
  ACTIONS == {read_text, read_pos,
                         set_cursor, unset_cursor,
                         close_window,open_window}

Application as interleaving of window 
threads with a clipboard thread

     APPL = win
1
[|cbe|] ...[|cbe|] win

n
 [|cbe|] clibboard
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Validation by Verification -
an Example in CSP 

• The behaviour of a window as a process:

win1 = letrec csr t = win
wid2

?return → win
wid2

!read_text 

                                     → rec?x → redisplay
wid3

!x → csr x

                                 
�

 win
wid3

?button-1 → win
wid3

!read_pos

                                     → rec?p → winwid3!read_text(p) 

                                            → rec?x → clibboard!x → set_cursor -> csr t

                                 
�

 win_?button_1-R → unset_cursor → csr t

                                 
�

 winwid3?button-1 → close_window → Skip

            in redisplay
wid3

!"" → csr ""
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Validation by Verification -
an Example in CSP 

Potential for analysis

Checking usability properties such as:

GUI deadlockfree                  

any wini  will be left after max. 3 quit-button events

similar: undo possible for all wini 

Analysis possibly automatic with Tool FDR !
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Concrete Technologies:

• Implementation in Java-Swing

• Implementation in SmlTk
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Concrete Technologies: Java/Swing

• Popular, powerful Technology 
(originated by Netscape (since 1996) & SUN)

• object-oriented library design
• potential for concurrent operations

 via Java-threads
• support for customization

(look-and-feels such as "Metal", "Motif", "Windows")
• High-level Components such as TreeLists, Tables, etc.
• Comes in two flavors: 

• Java/AWT:  peer-approach    (problems with portability)
• Java/Swing: painting-approach  (problems with speed)

⇒ Swing recommended; shares Event-Model with AWT.
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Concrete Technologies: Java/Swing

Window Components organized in Class-Hierarchy:

Object

JComponent

JFrame

Frame

Window

Container

Component

JPanel

Component:    repaint, setLayout, add, isVisible, setVisible, isShowing, 
                        getLocation, setLocation, getSize,...
Window:          toFront, toBack
Frame:            setResizable, setTitle, setIconImage

JPanel JListAbstractButtonJTextJLabel . . .
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Concrete Technologies: Java/Swing

• Methods organized in Model-View-Controller (MVC)
Design Patterns

• content  (gui-state; eg. state of text-fields, ...)
• visual appearance ("configurations", color, size, ...)
• behaviour (reaction to events)

• Remarks:

• it is not that original (Tk has it too)
• not much more than a stylistic guideline
• sometimes difficult to separate view and control ([HC 99]379)
• even in simple cases a "grief for the programmer"

                                                                            ([HC 99]380)
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Concrete Technologies: Java/Swing

Layout Management

controlled by a default Layout Manager   (replacable)

border Layout:

                                        class MyPanel extends JPanel
                             {  setLayout(new BorderLayout());
                                   . . .
                                add(yellowButton,"South");

                             } 

North

South

West EastCenter
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Concrete Technologies: Java/Swing

Event-Model    (from AWT) :  Observer-Pattern.

Listeners   ⇒  Event-Consumers  (Container)
 
Events       ⇒  Listeners (occuring in Containers)

low-level events
       KeyEvent, MouseEvent, TextEvent, WindowEvent, ...

semantic events
       ActionEvent, WindowEvent,
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Concrete Technologies: Java/Swing

Listeners : Characterized by Java Interfaces

ActionListener      

WindowListener            public void windowClosing(WindowEvent e)
                         public void windowClosed(WindowEvent e)

                         public void windowIconified(WindowEvent e)

                         public void windowOpened(WindowEvent e)

                         public void windowDeiconified(WindowEvent e)

                         public void windowActivated(WindowEvent e)

                         public void windowDeactivated(WindowEvent e)

 

KeyListener, MouseListener, . . .

For convenience: KeyAdapter, WindowAdapter, ... with defaults 
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Concrete Technologies: Java/Swing

• Preemptive Multitasking: Java Threads
• create kill
• group threads
• control priorities
• locking objects or methods:

built-in in Java
       public synchronized void put(int value) {
                     // CubbyHole locked by the Producer

                     ..

                     // CubbyHole unlocked by the Producer

            }

• more and more locked Components in Swing   ⇒    
problems with efficiency . . .
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A Java/Swing Example

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class SimpleExampleFrame extends JFrame

   implements KeyListener

{  public SimpleExampleFrame ()

   {  setTitle("Please enter name:");

      setSize(220,120);

      addWindowListener(new WindowAdapter()

      {  public void windowClosing

                            (WindowEvent e)

         {System.exit(0);

         }

      } );

      Container contentPane = getContentPane();

      JPanel panel = new Jpanel();

      JLabel label = new JLabel("name:");

      panel.add(label, "West");

      entry = new JTextField(12);

      entry.addActionListener(this);

      panel.add(entry, "East");

      contentPane.add(panel,"North");

      JButton quitButton = new JButton("Quit");

      quitButton.addActionListener(new ActionListener()

        {  public void actionPerformed(ActionEvent evt)

           {  System.exit(0); } 

        }); 

      JPanel panel2 = new JPanel();

      panel2.add(quitButton);

      contentPane.add(panel2,"South");

   }
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   public void actionPerformed(ActionEvent evt)
   {  Object source = evt.getSource();

      if (source == entry) 

         {String h = entry.getText();

          super.setTitle(h);

         }

      else {}

   }

   private JTextField entry;

}

public class SimpleExample {

   public static void main(String[] args)
   {  JFrame f = new SimpleExampleFrame();

      f.show();

   }

}

Concrete Technologies: 
A Java/Swing Example
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Concrete Technologies: Java/Swing

• Beyond Swing:

• Advanced Toolkits
• Accessibility API
• 2D - API
• Drag-and-Drop API

• Java Foundation Classes Library (JFC)
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Concrete Technologies: SmlTk

Overall Architecture

Application

Toolkit:Warnings, Filer, Drag&Drop, ...

SmlTk:
Windows, Widgets, 

Configurations, Bindings & Events

sml (POLY or NJML or Harlekin ...)

wish
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Concrete Technologies: SmlTk

• Topmost  Type: Windows(->Java: JFrame)

•  Widgets (Graphical Objects)(->Java:JComponent) 

   type Window = WinId * string * Widget list * (unit-> unit)

   datatype Widget = 

        Frame   of WidId * Widget list * Pack list * Configure list * Binding list

      | Label   of WidId * Pack list * Configure list * Binding list

      | Button  of WidId * Pack list * Configure list * Binding list

      | Entry   of WidId * Pack list * Configure list * Binding list

      | Listbox of WidId * ScrollType * Pack list * Configure list * Binding list

      | Menubutton of WidId * bool * MItem list  * Pack list * Configure list * Binding list 

      | Entry   of WidId * Pack list * Configure list  * Binding list

      | TextWid of WidId * ScrollType * AnnoText * Pack list * Configure list * Binding list

      | Canvas  of WidId * ScrollType * CItem list * Pack list * Configure list * Binding list

      | . . .
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Concrete Technologies: SmlTk
• Configurations (Java: -> "View")

•  Bindings  (Java: -> Listeners; "Control")

 datatype Configure =
        Width        of int               (* -width       <val> *)

      | Height       of int               (* -height      <val> *)

      | Borderwidth  of int               (* -borderwidth <val> *)

      | Relief       of RelKind           (* -relief      <val> *)

      | Foreground   of Color             (* -foreground  <val> *)

      | Background   of Color             (* -background  <val> *)

      | Text         of string            (* -label       <val> *)

      | Font         of Font              (* -font        <val> *)

      | Variable     of string            (* -variable    <val> *)

      | Value        of string            (* -value       <val> *)

      | Icon         of IconKind          (* -bitmap or -image ... *)

      | Cursor       of CursorKind        (* -cursor      <val> *)

      | Command      of SimpleAction      (* -command     <val> *)

      | Anchor       of AnchorKind        (* -anchor      <val> *)

      | FillColor    of Color             (* -fill        <val> *)

      | Outline      of Color             (* -outline     <val> *)

      | OutlineWidth of int               (* -width       <val> *)

      | . . .

datatype Binding = BindAct of Event * Action
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Concrete Technologies: SmlTk
• Events (Java: -> low level events)

•  Packing (Java: -> Layout Management)

datatype Event = 

        KeyPress   of string

      | KeyRelease of string

      | ButtonPress   of int Option.option

      | ButtonRelease of int Option.option

      | Enter  | Leave  | Motion      

      | UserEv of string

      | Shift of Event  | Ctrl of Event | Lock of Event   | Any of Event 

      | Double of Event | Triple of Event

      | ModButton of int* Event

      | Alt of Event    | Meta of Event 

      | Mod3 of Event   | Mod4 of Event | Mod5 of Event

   

    datatype Edge       = Top | Bottom | Left | Right

    datatype Style      = X | Y | Both

    datatype Pack       = Expand of bool | Fill of Style | PadX of int

                         | PadY of int  | Side of Edge
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Concrete Technologies: SmlTk

The running example in SmlTk:

structure SmallExample : sig main : unit -> unit end = 

struct 

   val mainID  = mainWinId()

   val entID   = newWidgetId()

   val label   = Label(newWidgetId(), [Side Left], [Text "name:"], [])

   val input   = let fun endInput _ = changeTitle mainID (readTextAll entID)

                 in  Entry(entID, [], [Width 20], [Bind("", endInput)]) end

   val quit    = let fun stop _ = closeWindow mainID

                 in Button(newWidgetId(),[Side Bottom],

                           [Text "Quit",Command stop],[]) end

   val topblock = Frame(newWidgetId(), [label, input], [Side Top], [], [])

   val enterwin = (mainID, "Please enter name", [topblock, quit], fn _ => ())

   fun main ()= startTcl [enterwin];

end;

⇒ Quite compact !!!
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Conclusion
• Design, Analysis of GUI's 

can be amazingly complex!

• Open problems in Analysis and Validation 
(while basics are clear and simple)

• Java/Swing: 
• Data-Model for Widgets neatly organized via inheritance
• MVC, Observer Pattern (in events) somewhat awkward
• threads problematic in current implementation 

• Functional Programming and GUI's: 
• no problem  (even in pure languages like Haskell/Tk)
• ... while libraries are clearly more limited as Java/Swing
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Validation of 
Software Systems

(1)

Burkhart Wolff
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Overview
� Where are we in the

Development Process?

� Validation =
"Are we building the right product?"

"Are we building the product right?"

� Validation of 
� Implementation
� Software-Integration
� System-Integration
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Overview
� Three Dimensions of the Problem:

� Validation techniques
(verification(1), inspection(2), testing(3), . . .)

� Validation levels 
(again: System-Integration(1), Software-Integration(2), Implementation(3))

� Validation targets
(GUI(1), functional kernel(2), component interaction(3),
 system interaction with the environment(4))

� These talks: emphasis on testing functional kernels
� Note: not all of these combinations are meaningful! 3 3 2

T L T
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Modeling and Validating GUI's
� System Integration Level:

� techniques:
� inspection,
� ergonomic metrics (GOMS-model)  

and usability criteria, 
� non-functional requirements check 

(e.g. timing, stability under stress, . . .)
� Software Integration Level

� by hand
� by replay
� by generated replay-scripts 

(Test-Case-Generation)
� by verification 

rev
isi

ted

2 1 1

3 2 1

1 3 1
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Validation of GUI's

• Test-Case-Generation
Path-Generation from StateChart,
Test-program based on Dummy-Kernel

� Test-Case-Generation based on Data-Model
for System-Integration Test

rev
isi

ted

3 2 1

3 2 1
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Validation of GUI's:
by Verification 

� Formalizing the GUI-Event-Model
� in temporal logic

� in process algebra formalisms such as 
CSP (concurrent sequentiel processes, 
Hoare/Roscoe)

� Formalizing Design Goals

� Proving Refinement of GUI-Event-Model 
 

rev
isi

ted

1 2 1
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Verification and
Transformation

� Idea: Using Logical Rules to Establish 
          Equivalence Between Formal 
Specification
          and Implementation 

� post-verification approach:

given: program, specification
procedure: show (interactively!) equivalence 
                    in some logic (Hoare-Logic, 
                                            Dynamic Logic,
                                            PL1, HOL, Z, . . .)

1 2 2

1 3 2
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Verification and
Transformation

� variant of post-verification: 
development by refinement

given:         sequence of specifications S
1
, ..., S

n

procedure: show (semi-interactively): S
i+1

 refines S
i

                              
  for some Refinementrelation refines.

                    generate automatically code from S
n
.   

examples:   Atelier B (Z-logic), 
                    KIV (Dynamic Logic),
                    TkWinHOL, IsaWin 
                                        (Back's Refinement Calculus) 

1 3 2

1 2 2
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Verification and
Transformation 

� Evaluation: 
� advantage: Applicable (in principle!) on

� software-integration, 
� software-architecture,
� algorithms.
� Can produce the highest degree of quality 

� disadvantage:
� (at least intellectually:)    very expensive
� automatic support still active research area
� it is still difficult to integrate full-blown verification SE-process
� reserved to mission critical or safety critical applications

1 3 2

1 2 2
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Verification and
Transformation

� transformational approach:

given:         specifications S
1

procedure: apply (highly interactively) 
                    transformation rules (like DivideAndConquer)
                    produce sequence of specifications such 
that: 
                                      S

i+1
 refines S

i

                              
  for some refinement relation refines.

                    generate automatically code from S
n
.  

examples:   TkWinHOL, KIDS, TAS, CIP, . . .

1 3 2

1 2 2
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Validation of Code
by Inspection 

� Idea: Check a program by somebody else . . .
� programming team makes system release
� group of reviewers (peers) checks several aspects

of system by line-by-line code review
� coordination meetings discussing errors found

(no solutions discussed)
� result: protocol over errors and statistics

⇒ system corrected by programming team
⇒ precondition: inspections must be planned and

                       peers must be independent

2 3 2
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 Inspection: 
A Checklist
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 Software Engineering  Spring 2002

 Inspection: 
A Checklist
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Validation of Code
by Inspection 

� Evaluation:
� important: psychological factors, experience of peers . . .
� empirical data:

� costs: 15% - 20% of development costs
� 60%-70% of errors can be found   (really ???)
� relative high "return of investment" 

� problems: 
� results depends on subjective mesures and personal form,
� does not scale up to large systems,
� relatively high costs,
� inspections are sometimes obstacle for  improvements.

2 3 2
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Validation of Code
by Automated Inspection 

� Idea: 
Using static analysis techniques for finding dangerous 
constructs

� type checking
� checking conformance to  

documentation and format guidelines
� checking absence of "unusual" data-flows or control-flows
� software-metrics 

(e.g. McCabes Cyclometric Numbers, etc.)

2 3 2
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Validation of Code
by Automated Inspection 

� Evaluation: 
� advantage: 

� automatic,
�  can be used by programmers

� disadvantage:
� does not use semantics of a program

(perfectly typed programs can be completely buggy . . .)

� software metrics: foundation controversial . . . 

2 3 2
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Testing 

� General Remarks. Testing is: 
� the most used quality assurance technique
� often used in an unsystematic way
� (potentially) complementary to formal specifications

� if assumptions on the environment of a 
system have to be made (test as experiment)

� if specifications model "the wrong thing", testing may tell us 
...

� very expensive
� 50 % of cost
� 50 % of development time (Myers, Art of Software Testing)

3 * *
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Testing 

� General Remarks.
Testing is: 

� not really replacing verification
                
                Program testing can be used to show the presence
                      of bugs, but never to show their absence (Dijkstra)

� admittedly a way to increase the trustworthyness 
� based on sometimes not fully understood heuristics

3 * *
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Testing 
� Along the process-model-levels, we distinguish:

� acceptance test 
      usability, alpha-test, beta-test, cf. slide 5.

� integration test
      testing along the interfaces of modules
       testing the interaction of the components.
       (goal: check if preconditions of subcomponents are
        respected.
             "Normal" system input should not produce precondition

                   violations that result in overall "exceptional" behaviour)
� unit test

      tests of one function or module. 
       (goal: test cases for "normal" and "exceptional" beh.)  

3 1 *

3 3 *

3 2 *
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Integration Test 
� Principles: Init-Access-Testing vs. Sequence Testing

i
2

i
3

i
1

stubs

modul-context

modul-under-test

local store stubs

test driver

op(x) y

Test: init(i
1
,i

2
,i

3
); op(x); check(get y) Test: op

1
(x

1
);...;op

n
(x

n
), check(get y)

yTest-Sequence

3 2 *
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Integration Test 
� Evaluation:

� the init-acces-approach needs acces to all internal states. 
this is sometimes neither possible (source unknown)
nor desirable (complexity! Against encapsulation of state!). 
however, this approach is comparatively simple
(provided data for unit tests is available).

� the sequence-test approach requires no internal knowledge
over modules - but may be more difficult to perform . . .
C.f. testing of hardware components . . .

� both approaches depend on test-cases for 
exceptional behaviour from unit tests. 
 

3 2 *
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Unit Test: An Introductory 
Example. 

� The problem:

A program reads 3 integers. Their values represent the length of 
the 3 edges of a triangle. The program decides if the triangle is

� equilateral         ("gleichseitig")
� isosceles            ("gleichschenklig")
� scalene              ("ungleichseitig")

3 3 3
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Unit Test: 
Introductory 

Example 
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Unit Test 

� Hhm, could this task be accomplished 

                  systematically ?

� Even better, could this task be accomplished
                 

                   automatically ?
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How To Talk about "Testing"
� Approach: State-Of-The-Art Systems
� Approach: Testing Techniques
� Approach: Test-Case Adequacy Criteria

� instead of          
                       "how to get a test set"
we ask 
                       "how to get a test set right?"

When do we have tested "enough"?

3 * *
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Testing Techniques: Two Classes

White-Box vs. Black-Box Testing Techniques 3 * *
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A "Finer" Classification of 
Test Adequacy Criteria

� Following [ZHM 97], we use adequacy criteria.
We distinguish criteria for:

� structural testing
 "Couverage of a particular part of the structure of the program or specification" 

� fault -based testing
 "focus on detecting faults of programs"

� error -based testing
 "focus on errors produced by programs"

3 * *
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Program-Based Structural Testing
(control flow based)

begin
  input(x,y);
  whi le(x>0 and y > 0) do
          i f (x>y) then x := x-y
                      else y := y-x
          endif
  endwhile;
  output  (x+y)
end;

begin

input(x,y)

x:=x-y y:=y-x

output(x+y)

end

a: x>0,y>0,x>y                  b:  x>0,y>0,x≤y

k

m

               c:  x>0,y>0,x≤y

d: x≤0 ∨ y≤0
h:  x≤0 ∨ y≤0

e:  x>0,y>0,x>y
g:  x>0,y>0,x>y

f:  x>0,y>0,x≤y
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Program-Based Structural Testing
(control flow based)

Test Cases following Statement Covering Method 
(generated "by hand"):

Path x y output
d/k 0 3 3
b/c/k 1 2 1
a/e/h 2 1 1

How can the generation of x and y be automated?
(output MUST BE CHECKED BY "HIGHER INSIGHT" ! ! !)
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Program-Based Structural Testing
(control flow based)

Idea: 
         conjoin the path formulas and negated non-path-formulas (see below), 
           apply substitution according to assignment rule in Hoare-Logic, simplify,
           choose ground substitution (if none, path impossible).

Example for path b/c/k:
           x > 0 ∧ y > 0 ∧ x ≤ y
      ∧ (x > 0 ∧ y > 0 ∧ x ≤ y) [y := y-x]
      ∧ ¬ (x>0 ∧ y>0 ∧ x>y) [y := y-x][y := y-x] (* negated g branch *)
 ≡      x > 0 ∧ y > 0 ∧ x ≤ y
      ∧ x > 0 ∧ y > x ∧ 2x ≤ y
      ∧ ¬x>0 ∨ ¬y>2x ∨ ¬3x>y
 ≡   x > 0 ∧ y > 0 ∧ 2x ≤ y ∧ y ≤ 3x                     Solution: x=1,y=2.
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Program-Based Structural Testing
(control flow based)

� Criteria
� statement coverage
� branch coverage
� path coverage w.r.t. some set of paths P
� cyclomatic-number criterion (McCabe)
� multiple condition coverage

� Evaluation:
� potentially fully automatic
� uses well-known techniques from compiler construction
� foundation semanticless, 

sometimes heuristic, sometimes metric-mystic.



 Burkhart Wolff 32

 Software Engineering  Spring 2002

Program-Based Structural Testing
(data flow based)

� Analogously: Dataflow Graphs (AST)
 "based on variables occuring within a program, let it be as   definition or use".

�

Criteria:
� all definitions
� all uses
� k-tuples, k-dr interaction, context coverage ...
� interprocedural data flow
� dependence coverage ...
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Program-Based Structural Testing
(data flow based)

� Evaluation
� variable occurence: access to truly semantic properties
� constant functions
� data independence
� check for "hidden states" possible
� automatic

� problems with aliases and pointers

⇒  no practical relevance
  for programs in the large and in C++
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  Specification-Based 
"Structural" Testing

� Gaudel, Dick/Faivre, Santen, Stepney ...

as we will see next week ...

�     TestSet : 
�
(I×O) = I → 

�
O = {(i:I,f:O→bool)}

TestSet's equivalent to pairs of
input I and oraclefunctions f
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Fault-Based Adequacy Criteria
� Error Seeding
� Mutant Generation
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Fault-Based Adequacy Criteria
� Error Seeding
� Mutant Generation
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Fault-Based Adequacy Criteria
� Error Seeding
� Mutant Generation
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Fault-Based Adequacy Criteria
� Error Seeding
� Mutant Generation

TestSet
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Fault-Based Adequacy Criteria
� Error Seeding
� Mutant Generation

TestSet
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Fault-Based Adequacy Criteria
� Evaluation

� fits well into conventional software production:
simply controls "quality engineers"

� yahoo! no formal spec necessary ! 
� good means to locate errors
� looks automatic
� mutant generation via transformations
� Problem: Many equivalences - human costs
� Problem  for error-seeding: 

                it is difficult to find a good error-model for software
� Problem: large computation resources required

⇒ Up to now, works only for hardware-testing (Stuck-At-Analysis)
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Fault-Based Adequacy Criteria
� Perturbation Tests

+ >c2

φ

<= 1.0

*

x1

x2
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Fault-Based Adequacy Criteria
� perturbations (error-functions)

� for algorithms with fixed number of variables
with continuous input domain

+ >c2

φ

≤ 1.0

*

x
1

x
2

e
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Fault-Based Adequacy Criteria
� Adequacy criteria:

� Adequacy in detecting perturbations
� Adequacy of detecting predicate perturbation

� Evaluation
� good, well-understood semantic basis
� under certain conditions garantees for error-

detection
� very limited application area
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Error-Based Adequacy

� Specification-Based Input Space Partitioning
 "basic idea is to partition the input/output behaviour space into subdomains ..." 

�  Gaudel, Dick/Faivre, Santen, Stepney ...

as we will see next week ...

� Program-Based Input Space Partitioning
 "input test-cases along paths in control flow graphs using symbolic execution"

� Boundary Analysis
� Functional Analysis
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Conclusion
� wide spectrum of validation methods
� testing can be formal, too
� basics of testing are simple, 

but difficult to scale up  
� Evaluation:

� conventional (semantic free) tests rather dubious
(with the exception of data-flow based testing)

� specification and program should both be used
� trend to systematic tests and formal methods

⇒  more in the next lecture . . .
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Conclusion II 
Specification Based Testing

� test-case-generation is deduction
� many problems due to size
� for good tests: 

� a lot of  different techniques need to be combined,
� a lot of criteria need to be combined 

� challenges: size, sequencing,
                   non-determinism, 
                   time, embedded systems
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Validation of  
Software-Systems

(2)
Burkhart Wolff
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Overview
� Specification based

Unit Tests:

Where are we in the
Development Process?

HERE !!!

SD1:
System Require-
mentsAnalysis

SD4/SD5:
Software
Design

SD2:
System Designs

SD3:
SW/HW Require-

mentsAnalysis

SD7:
Software

 Integration

SD8:
System 

Integration

SD9:
Transition to 

Utilisation

SD6:
Implementation
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Overview
� DNF-Method

� Handling Quantifiers in the "Algebraic Method"

� Test-Sequence Generation  (Dick/Faivre)

� Abstraction Techniques

� Conclusion
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Unit Test: An Introductory Example. 

� The Problem:

A program reads 3 integers. Their values represent the length of 
the 3 edges of a triangle. The program decides if the triangle is

� equilateral         ("gleichseitig")
� isosceles           ("gleichschenklig")
� scalene              ("ungleichseitig")
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Unit Test: 
Introductory 

Example 
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Unit Test 

� Hhm, could this task be accomplished 

                  systematically ?

� Even better, could this task be accomplished
                 

                   automatically ?
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Approximate the Infinite by the Finite

� What does this mean Conceptually?
� Uniformity Hypothesis: 

System behaves "uniformly" in some (finite) set of (infinite) input 
sets (the partitioning of input). Then we can test on 
representatives of input sets.

� Regularity Hypothesis: 
Assumes that all input t with a certain complexity |t| less than a 
bound n are sufficient to establish the correct behaviour of a 
system.

In event-models, the regularity hypothesis can also be 
interpreted as follows: After some finite set of finite input-
sequences, the system reaches a tested state.  The system is 
assumed to behave like a finite automaton.  
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Approximate the Infinite by the Finite

� What does this mean deductionally/computationally?
� Uniformity Hypothesis:

                                                     ∪
i:1..n

S(i) =A ∧                               

                                                                            ∀ i:1..n • ∃ x:S(i)• P(x)            

 
                                                                    ∀ t:A • P(t)       

� Regularity Hypothesis:
   

    ∀ t • |t| < n ⇒ P(t)     
                                                    Note: this is quite induction-like. . . 
                ∀ t• P(t)
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Approximate the Infinite by the Finite

� The Uniformity Hypothesis gives rise to the following

                                  IDEA:

Compute the Partitions via Disjunctive-Normal-Forms!

              ∀ x
1
, ..., x

n
• D

1
(x

1
,..,x

n
) ∨ . . . ∨ D

m
(x

1
,..,x

n
)

and choose for each D
i 
arguments such that the disjoint 

becomes valid !                            
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DNF-Method
� Example: 

triangle : 
�
( �  × �  × � ) 

∀ x, y,z : � • triangle(x, y,z) = x>0 ∧ y>0 ∧ z>0 ∧ 

                                                  x+y > z ∧ y+z > x ∧ x+z > y

program : �  × �  × � �    res 

∀ x, y,z : � • triangle(x, y,z) ∧ 
                        program(x,y,z) = if x=y then if y=z then equilateral
                                                                       else  isosceles
                                                    else if y=z then isosceles
                                                           else if x=z then isosceles
                                                                  else scalene  ∨
                      ¬triangle(x, y,z) ∧ program(x,y,z) = error  

res ::= equilateral | isosceles | scalene | error  
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DNF-Method
� We have the following rules:

� specification massage:
(a = (if Q then x else y)) = ((Q ⇒ a = x) ∧ (¬ Q ⇒ a = y))

� logical stuff:
(a ⇒ b) = (¬a ∨ b), ¬¬a= a , . . .

� distributivity (the core of DNF computation):
 (P ∧ (Q ∨ R)) = (P ∧ Q ∨ P ∧ R),    ((P ∨ Q) ∧ R) = (P ∧ R ∨ Q ∧ R)

� data type information:
equilateral ≠ isosceles, equilateral ≠ scalene, equilateral ≠ error, . . .

� conjunction-congruence rule:
                                                                              [P']
                                                      P = P'            Q = Q' 

                                                        (P ∧ Q) = (P' ∧ Q')
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DNF-Method
� We apply these rules in 4 term-rewriting processes, 

each computing a normal form
� Result (in Isabelle/HOL(98)): 

�         x = y ∧ y = z ∧ triangle (z, z, z) ∧ program (z, z, z) = equilateral ∨
        x = y ∧ y ≠ z ∧ triangle (y, y, z) ∧ program (y, y, z) = isosceles ∨
        y = z ∧ x ≠ z ∧ triangle (x, z, z) ∧ program (x, z, z) = isosceles ∨
        x = z ∧ y ≠ z ∧ triangle (z, y, z) ∧ program (z, y, z) = isosceles ∨
        x ≠ y ∧  x ≠ z ∧ y ≠ z ∧ triangle (x, y, z) ∧ program (x, y, z) = scalene ∨
        ¬ triangle (x, y, z)  ∧ program (x, y, z) = error

� Further unfolding of the definition of triangle and DNF-
computation yields 6 more cases (for error).
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DNF-Method
� For each of the clauses in the DNF we generate

a solution and get the test case:

x y z program
2 2 2 equilateral
1 1 2 isoscele
2 1 1 isoscele
1 2 1 isoscele
4 5 3 scalene

x y z program
-2 2 2 error
1 -2 2 error
2 1 -1 error
1 2 4 error
4 1 2 error
1 4 2 error

Normal Behaviour Exceptional Behaviour



 Burkhart Wolff 14

 Software Engineering  Spring 2002

DNF-Method
� Evaluation:

� Test-Class-Generation automatic     (in principle)
for specs with one outermost universal quantification

� Allows "massage" of specifications
� Requires theorem proving . . .
� Produces quite "minimal" Test-Set 
� But: significant blow-ups may occur . . .

⇒ Test-Generation theoretically shallow,
but technologically hard problem (BDD's, . . .)   
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Handling Quantifiers by the
"Algebraic Method"

� The DNF-approach requires a special form.

� What happens with arbitrary specification formulas?
� What happens with Quantifiers?
� How to approximate  

an infinite model by a finite one?
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Handling Quantifiers by the
"Algebraic Method"

� What to do with universal quantifiers?
� find finite bound and              (∀ x • x = {a,b,c} ∧ P(x))   

enumerate conjuctions            =  P(a) ∧ P(b) ∧ P(c)
� apply uniformity hypothesis
� apply regularity hypothesis

 

� What to do with existential quantifiers?
� one point rule                    (∃ x • x =  t ∧ P(x))   =   P(t) 

� find finite bound and         (∃ x • x = {a,b,c} ∧ P(x))   
enumerate disjunctions      =  P(a) ∨ P(b) ∨ P(c)

� other techniques                (Mona, Constr. Sat., Resolution . . .)
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Handling Quantifiers by the
"Algebraic Method"

� Example: Specification of insort 

perm : seq 
�

 ↔ seq 
�

 
asc    : � (seq 

�
)

∀ x, y: seq 
�

• perm(x, y) = ∃ f : 1..#x �  1..#x • 

                                                                   ∀i:1..#x • x(i) = y(f (i))

∀ x: seq 
�

• asc(x) = ∀ i:1..#x-1 • x(i) ≤ x(i+1)

insort: 
�

 × seq 
�

 �  seq 
�

 
∀ a:

�
, x:seq 

�
• asc x ⇒ let  y = insort(a, x)                     

                                          •    asc(y) ∧ perm(〈a〉� x, y)
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Handling Quantifiers by the
"Algebraic Method"

� Idea: We apply Regularity Hypothesis:

∀ a: �  • a < 3 ⇒ P(t)                       ∀ x:seq 0..2 • #x < 3 ⇒ P(t)     
                                                      
          ∀ a: � • P(t)                             ∀ x:seq 0..2 • #x < 3 ⇒ P(t)

     P(0)    P(1)     P(2)                 P(〈〉)  P(〈0〉)  P(〈1〉)   . . .  P(〈2,2〉)  
                                               
          ∀ a: � • P(t)                             ∀ x:seq 0..2 • #x < 3 ⇒ P(t)
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H(a,x) = asc x ⇒ asc(insort(a, x)) ∧ perm(〈a〉� x, insort(a, x))

∀ x:seq 
�

• H(0,x) 

∀ a:
�

, x:seq 
�

• H(a,x) 

∀ x:seq 
�

• H(1,x) ∀ x:seq 
�

• H(2,x) 

 H(0,〈〉) 
 H(0,〈0〉) 
 H(0,〈1〉) 
 H(0,〈2〉) 

 H(0,〈0,0〉) 
 H(0,〈0,1〉) 
 H(0,〈0,2〉) 
 H(0,〈1,0〉) 
 H(0,〈1,1〉) 
 H(0,〈1,2〉) 
 H(0,〈1,0〉) 
 H(0,〈1,1〉) 
 H(0,〈1,2〉) 

 H(1,〈〉) 
 H(1,〈0〉) 
 H(1,〈1〉) 
 H(1,〈2〉) 

 H(1,〈0,0〉) 
 H(1,〈0,1〉) 
 H(1,〈0,2〉) 
 H(1,〈1,0〉) 
 H(1,〈1,1〉) 
 H(1,〈1,2〉) 
 H(1,〈1,0〉) 
 H(1,〈1,1〉) 
 H(1,〈1,2〉) 

 H(2,〈〉) 
 H(2,〈0〉) 
 H(2,〈1〉) 
 H(2,〈2〉) 

 H(2,〈0,0〉) 
 H(2,〈0,1〉) 
 H(2,〈0,2〉) 
 H(2,〈1,0〉) 
 H(2,〈1,1〉) 
 H(2,〈1,2〉) 
 H(2,〈1,0〉) 
 H(2,〈1,1〉) 
 H(2,〈1,2〉) 

H'(a,x) = asc(insort(a, x)) ∧ perm(〈a〉� x, insort(a, x))

 H(0,〈2,0〉) 
 H(0,〈2,1〉) 
 H(0,〈2,2〉) 

 H(1,〈2,0〉) 
 H(1,〈2,1〉) 
 H(1,〈2,2〉) 

 H(2,〈2,0〉) 
 H(2,〈2,1〉) 
 H(2,〈2,2〉) 
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H(a,x) = asc x ⇒ asc(insort(a, x)) ∧ perm(〈a〉� x, insort(a, x))

∀ x:seq 
�

• H(0,x) 

∀ a:
�

, x:seq 
�

• H(a,x) 

∀ x:seq 
�

• H(1,x) ∀ x:seq 
�

• H(2,x) 

 H'(0,〈〉) 
 H'(0,〈0〉) 
 H'(0,〈1〉) 
 H'(0,〈2〉) 

 H'(0,〈0,0〉) 
 H'(0,〈0,1〉) 
 H'(0,〈0,2〉) 
 H'(0,〈1,0〉) 
 H'(0,〈1,1〉) 
 H'(0,〈1,2〉) 

 H'(0,〈1,1〉) 
 H'(0,〈1,2〉) 

 H'(1,〈〉) 
 H'(1,〈0〉) 
 H'(1,〈1〉) 
 H'(1,〈2〉) 

 H'(1,〈0,0〉) 
 H'(1,〈0,1〉) 
 H'(1,〈0,2〉) 
 H'(1,〈1,0〉) 
 H'(1,〈1,1〉) 
 H'(1,〈1,2〉) 

 H'(1,〈1,1〉) 
 H'(1,〈1,2〉) 

 H'(2,〈〉) 
 H'(2,〈0〉) 
 H'(2,〈1〉) 
 H'(2,〈2〉) 

 H'(2,〈0,0〉) 
 H'(2,〈0,1〉) 
 H'(2,〈0,2〉) 
 H'(2,〈1,0〉) 
 H'(2,〈1,1〉) 
 H'(2,〈1,2〉) 

 H'(2,〈1,1〉) 
 H'(2,〈1,2〉) 

H'(a,x) = asc(insort(a, x)) ∧ perm(〈a〉� x, insort(a, x))

 H'(0,〈2,2〉)  H'(1,〈2,2〉)  H'(2,〈2,2〉) 

'



 Burkhart Wolff 21

 Software Engineering  Spring 2002

Algebraic Method

� Observation: The H'(...) represent Test-Oracles!
� evaluate each   insort(x,y)   with ground x and y

by the program under test and replace its value z 
� interpret the

 
         H'(x,y,z) = asc(insort(x, y)) ∧ perm(〈x〉� y, z)

by symbolic evaluation (such as ZETA)
NOTE: Quantifiers now finite !

� this process represents an oracle:
� true - succesful
� false - counterexample found ! 
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Algebraic Method

� Evaluation:
� The form of the regularity hypothesis shows that 

testing approximates induction
� Heuristic: 

� choice of n
� choice of the mesure |t|

� Technique quite powerful in connection with
animation and evaluation techniques of (finite)
Z specifications . . .
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Test-Sequence Generation
(Dick/Faivre)

� See Brucker Slides . . .
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Conclusion

� (White-Box) Testing can be very formal
� Challenging subject for deduction and 

partial evaluation
� Testing can be an approximation to verification

in the sense:
     Testing = Verification under 
                     Testing Hypothesis

� The adequate choice of test-hypothesis 
remains speculative . . .
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Conclusion
� Systematic Test-Case Generation possible:

� requires specification
� makes testing hypotheses explicit
� converges against verification

� Test-Case Generation often 
computationally hard

� A lot of research needs to be done . . .
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